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Abstract 
The mammary gland tissue exhibits a series of responses that are different from those of muscle 
and other peripheral tissues under amino acid deficiency. So, this present study was designed to 
investigate the effects of amino acid nutritional deficiency on the expression of protein metabol-
ism-related genes in the mammary gland and muscle tissues of lactating mice. A total of 60 post-
partum, lactating Kunming white mice were selected and randomly divided into 5 groups; each 
group contained 12 mice. Group A was the control group. The mice in group A were maintained on 
a normal diet after the initiation of lactation. Group B (starved) was given normal saline via intra-
gastric administration. Group C (energy) was given glucose solution via intragastric administra-
tion. Groups D and E received a sodium caseinate solution via intragastric administration, which 
provided 0.5 g protein/d and 1.5 g protein/d, respectively. The results showed the following. 1) 
When the mice were exposed to nutritional stress caused by dietary amino acid deficiency, the 
β-casein mRNA expression level was increased in the mammary gland tissue. The increase in 
β-casein expression was the most significant in the energy-supplemented group, followed by the 
starved group (P < 0.01). In addition, the expression level of myosin heavy chain 2A (MHC2a) 
mRNA was markedly reduced in the muscle tissue (P < 0.05). 2) Different dietary treatments sig-
nificantly affected the mRNA expression of ubiquitin system enzymes such as PolyUbC, E214k and 
C2 (P < 0.01). The expression levels of the enzymes were upregulated. 3) The blood level of insu-
lin-like growth factor 1 (IGF-1) was significantly decreased in the treatment groups (P < 0.01). 4) 
The phosphorylation level of the p70S6 kinase (p70S6K) was markedly enhanced in the mammary 
gland tissues collected from the treatment groups (P < 0.05). 5) The phosphorylation level of 
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p70S6K was elevated in the muscle tissues collected from the treatment groups. However, the 
magnitude of the increase was far smaller compared to that in the mammary gland tissues. 
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1. Introduction 
Under amino acid deficiency, mammary gland tissue exhibits a series of responses that are different from those 
of muscle and other peripheral tissues. The rate of amino acid uptake from the blood by the mammary gland tis-
sue increases to meet the needs of milk protein synthesis. In contrast, muscle and other tissues degrade proteins 
and release the deposited amino acids into the blood circulation. Therefore, lactation takes precedence over 
maintenance metabolism in amino acid and nutrient distribution in the body. 

The reasons behind the different responses of mammary gland and muscle tissues are not yet clear. However, 
some or all of the following aspects may be involved. 1) The types of proteins synthesized by mammary gland 
and muscle tissues are different. Mammary epithelial cells synthesize exocrine proteins, which are secreted into 
the extracellular space soon after being synthesized and then are no longer under the cells’ control. Muscle cells 
synthesize their own structural proteins, which are deposited in the cells and can be degraded. 2) The responses 
of mammary gland and muscle tissues to changes in humoral signals are different. Amino acid deficiency in-
duces changes in the concentrations of amino acids and related hormones in body fluids. The mechanisms of 
signal reception or sensitivities to the signals are different between mammary gland tissue and muscle tissue, 
resulting in differences in metabolism. 3) The metabolic regulatory mechanisms are different between the cells 
of mammary gland and muscle tissues. Both mammary epithelial cells and muscle cells are highly differentiated, 
but the natures of the cell types are very different. Therefore, differences may exist between the metabolic regu-
latory mechanisms of the cell types, leading to different responses of the two types of tissues to amino acid defi-
ciency (Bauman et al., 2000; Vernon et al., 1998) [1] [2]. This study was designed to investigate the effects of 
amino acid nutritional deficiency on the expression of protein metabolism-related genes in the mammary gland 
and muscle tissues of lactating mice. 

2. Materials and Methods 
2.1. Experimental Materials 
Clean grade Kunming white mice were purchased from Shandong Taibang Biological Products Co. Ltd., Taian 
City, China. Trizol reagent was purchased from Invitrogen (Carlsbad, CA, USA). The reverse transcription kit 
(Code: DRR037A) and real time polymerase chain reaction (PCR) kit (Code: DRR420A) were purchased from 
TaKaRa Co., Ltd. The primers were purchased from TaKaRa Bio., Inc. The mammalian target of rapamycin 
(mTOR) antibody (rabbit), phospho-mTOR (P-mTOR) antibody (rabbit), p70S6 kinase (p70S6k) antibody (rab-
bit), phospho-p70S6k (P-p70S6k) antibody (rabbit), eukaryotic translation initiation factor 4E-binding protein 1 
(4EBP1) antibody (rabbit) and phosphor-4EBP1 (P-4EBP1) antibody (rabbit) were all purchased from Cell Sig-
naling Technology, Inc. The cationic amino acid transporter 1 (CAT1) antibody (rabbit) and ASC amino-acid 
transporter 2 (ASCT2) antibody (rabbit) were purchased from Abcam plc.  

2.2. Experimental Design 
A total of 55 male and 110 female Kunming white mice were selected for the present study. The male and fe-
male mice were similar in age (measured in days) and body size. The male mice were housed singly while the 
female mice were housed together (3 female mice per cage) until the mice reached breeding age (male mice at 
approximately 10 weeks of age and the females at approximately 8 weeks of age). Healthy and active mice were 
selected and bred at a male-female mating ratio of 1:2. Upon confirmation of breeding success (approximately 
two weeks after mating), the male mice were removed. The female mice with confirmed pregnancies were 
housed singly until they gave birth. Starting on the first day of lactation, the female mice were subjected to 1 of 
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the 5 different types of treatment described below. Each treatment group contained 12 mice. 
Group 1 (control) was fed the normal diet after the initiation of lactation. Group 2 (starved) was given intra-

gastric administrations of 0.5 mL of normal saline at 7:00 and 19:00 on the first day of lactation and at 7:00 the 
following day (a total of 3 times). Group 3 (energy) received intragastric administrations of glucose solution (1.1 
g/mL) at 7:00, 11:00, 15:00, 19:00 and 23:00 on the first day of lactation and at 7:00, 11:00 and 15:00 the next 
day (a total of 8 times). The amount of energy provided by the glucose solution was 94.325 KJ/d, which met the 
energy needs of the mice. Group 4 (low Pro.) received intragastric administrations of sodium caseinate solution 
(0.55 g/ml) at 7:00 on the first day of lactation and at 7:00 the next day (a total of 2 times). The treatment pro-
vided 0.5 g of protein per day, which was insufficient for the protein needs of the mice. Group 5 (high Pro.) re-
ceived intragastric administrations of sodium caseinate solution (0.55 g/mL) at 7:00, 14:00 and 21:00 on the first 
day of lactation and at 7:00 and 14:00 the next day (a total of 5 times), which provided a total of 1.5 g protein 
per day. The mice in all of the treatment groups were fasted but allowed free access to drinking water. The mice 
were sacrificed at 36 h after the first intragastric administration (shandong agriculture university animal care and 
use committee approved this experiment). 

2.3. Sample Collection and Measurement Methods 
2.3.1. Collection and Examination of Blood Samples 
The mice in all of the treatment groups were caused death by cervical dislocation. Blood samples were collected 
from the mice, allowed to settle for approximately 30 min at 4˚C and then centrifuged at 5000 rpm for 20 min at 
4˚C. The supernatants were collected, transferred to labeled centrifuge tubes, and stored at −80˚C. The bio-
chemical indices of the blood samples were examined for blood glucose, insulin, insulin-like growth factor 1 
(IGF-1), growth hormone (GH) and prolactin (PRL). The hormone indices in the blood samples were analyzed 
by radioimmunoassay. The blood glucose levels were determined using an automatic biochemistry analyzer. 

2.3.2. Collection and Examination of the Tissue Samples 
After the blood samples were collected from the mice, a ventral midline skin incision was made, and mouse 
mammary gland tissue in the inguinal region was collected using forceps. In addition, skin was stripped from the 
hind limbs of the mice, and muscle tissue was collected. The tissue samples were placed into numbered 1.5 mL 
centrifuge tubes and quickly stored at −80˚C. The mRNA expression level of β-casein in the mammary gland 
tissue as well as those of α-actin, myosin heavy chain I (MHC I), MHC IIα, MHC IId/x, C2, 14-kDa ubiqui-
tin-conjugating enzyme (E214k) and polyubiquitin-C (PolyUbC) in the muscle tissue were determined. The 
phosphorylation levels of mTOR, p70S6k and 4EBP1 and the protein expression levels of ASCT2 and CAT1 
were measured in both types of tissues. 

2.3.3. Determination of the Levels of mRNA Expression in Mammary Gland and Muscle Tissues 
In the experiments, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was utilized as an internal reference. 
Total RNA was extracted from mammary gland tissue and muscle tissue using the Trizol method. After the 
quality of the extracted RNA was verified, reverse transcription was conducted in an improved 20 μL reaction 
system using the PrimeScriptTMRT reagent kit (Perfect Real Time) purchased from TaKaRa Co., Ltd. (Code: 
DRR037A). The steps of the reverse transcription reaction were as follows: 37˚C, 15 min; and 85˚C, 5 sec, 1 
cycle. 

Fluorescence-based quantitative real-time PCR was performed using the SYBR Green I dye and the SYBR 
Premix Ex TaqTM (Perfect Real Time) kit purchased from Takara Biotechnology (Dalian) Co., Ltd. (Code: 
DRR420A). The PCR reaction was conducted on the Applied Biosystems® 7500 Real-Time PCR Instrument 
(USA). The total volume of the reaction was 20 μL. The sequences of the primers utilized in the PCR reactions 
are summarized in Table 1. 

2.3.4. Determination of the Levels of Protein Expression in Mammary Gland and Muscle Tissues 
Proteins were extracted from various tissue samples, and the concentrations of total protein were measured. The 
amount of protein to be loaded was calculated. Based on the calculated results, corresponding amounts of sam-
ple loading buffer and lysis buffer were added to the protein samples. The protein samples were then boiled in a 
denaturing instrument for 5 min and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE) and western blot. 
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Table 1. Primer sequences for each gene.                                                                     

Gene Primers Primer sequences (5’ → 3’) Product size 

GAPDH Forward AAGGTGGTGAAGCAGGCAT 244 bp 

 Reverse GGTCCAGGGTTTCTTACTCCT  

β-casein Forward TCACTCCAGCATCCAGTCACA 126 bp 

 Reverse GGCCCAAGAGATGGCACCA  

α-actin Forward GTGAGATTGTGCGCGACATC 156 bp 

 Reverse GGCAACGGAAACGCTCATT  

MHC I Forward ACAACCCCTACGATTATGCGT 100 bp 

 Reverse ACGTCAAAGGCACTATCCGTG  

MHC IIα Forward CGACAACTCGTCTCGCTTTG 187 bp 

 Reverse CATTTCGATCAGTTCTGGCTTCT  

MHCIId/x Forward CACCAGGCTGCTTTAGAGGAA 207 bp 

 Reverse CCTGCTCCTAATCTCAGCATCC  

PolyUbC Forward GGCATGCAGATCTTTGTGAA 265 bp 

 Reverse TCTTGCCTGTCAGGGTCTTC  

E214k Forward CAGAAGGGACACCCTTTGAA 306 bp 

 Reverse CAATGGCCGAAACTCTCTTC  

C2 Forward CTTTATGCGCCAGGAGTGTT 301 bp 

 Reverse TTCATCCAAATTGCACTCCA  

2.4. Data Processing and Statistical Analysis 
The experimental data were organized using Excel and subjected to univariate analysis of variance (ANOVA) 
using the SAS 9.0 software. P values less than 0.05 were considered statistically significant while p values less 
than 0.01 were considered to be statistically highly significant. All results obtained by statistical analysis were 
expressed using the mean and standard error. 

3. Results 
3.1. Effects of Different Dietary Treatments on mRNA Expression Levels in  

Mammary Gland and Muscle Tissues 
As shown in Table 2, nutritional stress induced by diets deficient in amino acids significantly affected the ex-
pression of β-casein and MHC2α (P < 0.01, P < 0.05). The expression level of β-casein mRNA was enhanced in 
mammary gland tissues collected from the treatment groups. The most significant increase in β-casein mRNA 
expression was observed in mice supplied with only energy, followed by mice in the starved group (P < 0.01). 
β-casein mRNA expression was also elevated in the rest of the treatment groups. However, the differences were 
not statistically significant. The experimental treatments did not significantly affect the expression of α-actin 
mRNA in muscle tissue. However, a clear decreasing trend was detected, and the starved group exhibited the 
largest decrease in α-actin mRNA expression. In addition, the expression level of MHC2α mRNA was signifi-
cantly reduced in the treatment groups (P < 0.05). There were no significant differences in MHC2α mRNA ex-
pression between the treatment groups. 

3.2. Effects of Different Dietary Treatments on mRNA Expression of the  
Factors of the Ubiquitin System in Muscle Tissue 

It can be observed from Table 3 that different dietary treatments significantly affected the mRNA expression of  
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Table 2. Effect of treatment on the mRNA expression of different genes in mammary and muscle tissue.                       

 A B C D E SEM P 

β-casein 150.04b 230.36a 257.85a 156.92b 165.86b 18.16 <0.01 

α-actin 1.53a 1.11b 1.33ab 1.29ab 1.40ab 0.11 0.22 

MHCI 0.05 0.03 0.04 0.04 0.04 0.01 0.38 

MHC2α 0.19a 0.13b 0.13b 0.13b 0.13b 0.01 0.03 

MHC2d/X 0.24 0.21 0.30 0.29 0.32 0.03 0.22 

Note: The experimental data are expressed using the mean and standard error of measurement (SEM). Different letters in superscript following the 
values in the same row of the table ((a), (b), (c)) indicate statistically significant differences (P < 0.05). 

 
Table 3. mRNA level of UPP system genes in muscle tissue.                                                     

 A B C D E SEM P 

PolyUbC 0.42c 0.51bc 0.62b 0.59b 0.76a 0.04 <0.01 

E214k 0.16b 0.15b 0.25a 0.14b 0.21ab 0.02 <0.01 

C2 0.02c 0.04bc 0.12a 0.04bc 0.06b 0.01 <0.01 

Note: The experimental data are expressed using the mean and SEM. Different letters in superscript following the values in the same row of the table 
((a), (b), (c)) indicate statistically significant differences (P < 0.05). 

 
the proteins in the ubiquitin system, including PolyUbC, E214k and C2 (P < 0.01). Although significant differ-
ences existed between some of the treatment groups, the expression levels of PolyUbC, E214k and C2 were all 
upregulated. Compared with mice from the starved group, the expression levels of E214k and C2 mRNAs were 
highest in mice supplied with energy. 

3.3. Effects of Different Dietary Treatments on the Levels of Hormones and  
Glucose in the Blood 

Table 4 demonstrates that the blood level of IGF-1 was markedly decreased in the treatment groups in compar-
ison with the normal control group (P < 0.01). However, the differences between the treatment groups were not 
statistically significant. The prolactin (PRL) content was decreased in the starved group but was elevated in the 
other treatment groups. Again, the differences between the treatment groups were not statistically significant. 

3.4. Effects of Different Dietary Treatments on the Expression Levels of Factors of  
the mTOR Pathway and Amino Acid Carrier Proteins in Mammary Gland Tissue 

Table 5 showed that the dietary treatments significantly affected the phosphorylation level of p70S6K in the 
casein synthesis pathway (P < 0.05). The phosphorylation level of p70S6K was elevated in all treatment groups. 
The magnitude of increase was more significant in starved mice and in mice supplied with only energy. The ex-
pression level of the Lys/Arg carrier protein CAT1 was increased in the mammary gland tissues collected from 
the treatment groups (P < 0.05). Compared with mice supplied with protein, the magnitude of increase was 
slightly smaller in the starved mice and in mice supplied with energy. The expression level of the Met carrier 
protein ASCT2 tended to be decreased. In addition, the phosphorylation levels of mTOR and 4EBP1 were en-
hanced in the treatment groups. However, the differences were not statistically significant. 

3.5. Effects of Different Dietary Treatments on the Expression Levels of Factors  
of the mTOR Pathway and Amino Acid Carrier Proteins in Muscle Tissue 

As shown in Table 6, the phosphorylation level of p70S6K, a downstream signaling molecule of the mTOR 
pathway, was enhanced in muscle tissues collected from mice in almost all treatment groups except the ones 
supplied with an insufficient amount of protein. However, the magnitude of increase was far smaller compared 
to that of the mammary gland tissues. In addition, the phosphorylation levels of mTOR and 4EBP1 tended to be  
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Table 4. Hormone and glucose levels in the blood.                                                              

 A B C D E SEM P 

Insulin 21.31 13.57 41.06 53.96 38.58 13.44 0.23 

IGF-1 102.84a 66.98b 46.48b 39.01b 47.10b 11.01 <0.01 

GH 3.70 3.99 3.33 2.45 1.61 0.93 0.41 

PRL 1.12ab 0.67b 1.91ab 1.90ab 3.50a 0.82 0.21 

Glu 7.61 6.86 8.48 7.84 7.34 0.78 0.69 

Note: The experimental data are expressed using the mean and SEM. Different letters in superscript following the values in the same row of the table 
((a), (b), (c)) indicate statistically significant differences (P < 0.05). 

 
Table 5. Protein expression of the mTOR pathway and amino acid transporter in mammary tissue.                        

 A B C D E SEM P 

mTOR 1.00 0.77 0.75 0.77 0.93 0.09 0.26 

4E 1.00 0.68 0.73 0.66 0.92 0.19 0.66 

p70S6k 1.00 0.74 0.83 0.64 0.73 0.13 0.39 

P-mTOR/mTOR 1.00 1.65 3.02 2.21 2.12 0.57 0.28 

P-4E/4E 1.00 2.22 3.87 3.44 1.88 0.92 0.23 

P-p70/p70 1.00b 1.75a 1.89a 1.58ab 1.39ab 0.20 0.04 

ASCT2 1.00 0.67 0.72 0.68 0.79 0.15 0.57 

CAT1 1.00b 1.17ab 1.22ab 1.51a 1.43a 0.10 0.03 

Note: The experimental data are expressed using the mean and SEM. Different letters in superscript following the values in the same row of the table 
((a), (b), (c)) indicate statistically significant differences (P < 0.05). 

 
Table 6. Protein expression of the mTOR pathway and amino acid transporter in muscle tissue.                           

 A B C D E SEM P 

mTOR 1.00 0.88 0.73 0.67 0.59 0.17 0.49 

4E 1.00 0.83 0.79 0.88 0.86 0.18 0.72 

p70 1.00 1.16 1.10 1.30 1.13 0.10 0.35 

P-mTOR/mTOR 1.00 1.35 1.35 1.38 1.70 0.35 0.74 

P-4E/4E 1.00b 1.09ab 1.11ab 1.26a 1.17ab 0.06 0.16 

P-p70/p70 1.00bc 1.29b 1.80a 0.83c 1.09bc 0.14 <0.01 

ASCT2 1.00a 0.74b 0.86ab 0.92ab 0.80b 0.05 0.04 

Note: The experimental data are expressed using the mean and SEM. Different letters in superscript following the values in the same row of the table 
((a), (b), (c)) indicate statistically significant differences (P < 0.05). 

 
increased. The magnitude of increase was smaller compared with that of the mammary gland tissues. The ex-
pression level of the Met carrier protein ASCT2 was reduced in all of the treatment groups (P < 0.05), and the 
largest reduction was observed in the starved group. 

The results show that when experiencing dietary amino acid deficiency, lactating mice enhance muscle tissue 
degradation to preferentially meet the needs of lactation. In mammary gland tissue, the amount of utilized amino 
acid transporters is elevated, the phosphorylation level of the mTOR pathway is enhanced and the total amount 
of proteins synthesized is increased. In muscle tissue, the protein phosphorylation level is also increased. How-
ever, the amount of utilized amino acid transporters is reduced, the total amount of proteins synthesized is de-
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creased, and protein degradation is enhanced. 
Dietary amino acids and energy affect the activity of the ubiquitin-proteasome pathway, which is responsible 

for muscle tissue degradation. Adequate dietary amino acids and energy may enhance the activity of the path-
way. 

Hormones significantly affect the protein metabolism in mammary gland and muscle tissues. Among the 
hormones, the effect of insulin-like growth factors is especially remarkable. 

4. Discussion 
4.1. Changes in Specialized Proteins and Expression of the Ubiquitin System  

in Mammary Gland and Muscle Tissues 
The mammary gland displays the highest level of differentiation and the strongest metabolic activity throughout 
the lactating period [1]. The mammary gland is also one of the two types of tissues that utilize most of the nu-
trients in the maternal body. As the lactation period starts, the overall nutrient distribution and metabolism of the 
animals change significantly to meet the needs of the mammary gland. During the lactation period, the nutri-
tional needs of the animals rise to a higher level to support the production of milk. The majority of animal spe-
cies meet the increasing demand for nutrients by increasing food intake or utilizing nutrients stored in the body. 
In addition, the metabolism of major nutrients is often altered to provide sufficient nutrients to the mammary 
gland. In early lactation, many animal species use the body’s reserves rather than adjust the food intake to meet 
the demands of lactation [2]. Protein degradation in muscle tissue is a common metabolic adaptation mechanism 
employed by animals to provide the required amino acids for the production of milk proteins [1]. Peragon et al. 
and Hayase et al. reported that the protein turnover in animal organs and tissues is affected by the protein con-
tent in the diet [3]. Studies have shown that when the usable energy is sufficient and not restricted by environ-
mental factors, dietary proteins are utilized preferentially to synthesize the somatic proteins, which increase as 
amino acid intake increases. The continuous increase in amino acid intake results in a decreased protein deposi-
tion rate in the body. Low-protein diets reduce the relative rate of total protein synthesis and significantly en-
hance the rate of total protein reutilization, thereby promoting protein deposition [4]. 

In the present study, lactating mice were exposed to amino acid deficiency-induced nutritional stress. No sig-
nificant decrease in casein secretion was detected in the short term even though the nutrition or energy supply is 
lacking. On the contrary, the expression of the casein gene was upregulated, which suggested that mammary 
gland tissue might achieve protein turnover and ensure the priority of lactation through the degradation of mus-
cle tissues. The level of casein secretion was slightly higher in mice supplied with a sufficient amount of protein 
compared to the mice supplied with a low amount of protein. Judging from the changes in the expression level 
of specialized genes, there was no clear evidence that the amount of protein provided post starvation would af-
fect the level of casein synthesis. The expression levels of the casein gene were significantly decreased in mice 
from both the low protein and the high protein groups compared to the mice from the starved group, while the 
expression level of the casein gene was lower in starved mice compared to the mice supplied with only energy. 
The expression level of the MHC2α gene, which encodes one of the myosin heavy chain isoforms, was de-
creased in the muscle tissues (P < 0.05), indicating that the protein content of the muscle tissues was reduced. 
However, the results were not sufficient to prove whether the decrease was due to elevated protein degradation 
or due to reduced protein synthesis. Research conducted by Varshavsky et al. showed that the ubiquitin-protea- 
some proteolytic pathway is the primary pathway of muscle protein degradation in various consumptive diseases 
(including starvation, infections, diabetes, burns and metabolic acidosis) [5]. The main components of the ubi-
quitin pathway are the ubiquitins and the 26S proteasome complex. The 20S proteasome is the catalytic core of 
the 26S proteasome complex. Therefore, this study examined the mRNA expression of the components related 
to the ubiquitin-proteasome pathway. The results showed that the expression levels of PolyUbC, ubiquitin-con- 
jugating enzyme E214k and the C2 subunit of the 20S proteasome were all upregulated (P < 0.01). Previous stu-
dies have demonstrated that the expression of genes in the ubiquitin system is positively correlated with the ac-
tivity of the system. The inhibition of expression of the subunit genes significantly reduces the content and ac-
tivity of the proteasomes in cells [6]. The findings described above provide a powerful explanation for our re-
sults that protein degradation was elevated in muscle tissues. 

A study performed by Emery et al. showed that if the net energy provided by grain or roughage increases by 
4.18 MJ, the total milk protein content will increase correspondingly by 0.015 units. Furthermore, each addi-
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tional 1 MJ of metabolic energy provided by the diet will result in an increase of 0.03 units in total milk protein 
content [7]. The above findings indicate that milk protein content is positively correlated with energy intake (r = 
0.42). Sporndly et al. have identified a positive correlation between milk protein content and metabolizable 
energy intake (r = 0.42, r = 0.31), suggesting that milk protein content is primarily affected by dietary energy 
levels [8]. The present study showed that the expression level of the casein gene was the highest in mammary 
gland tissue collected from mice supplied with energy only in comparison to mice from the control group and 
other treatment groups. Our result was consistent with the findings of the above studies. The mRNA expression 
of the specialized genes in muscle tissue was examined. and the results showed that when the lactating mice 
were provided only with sufficient energy, the protein content in the muscle tissue decreased significantly (P < 
0.05). The magnitude of the decrease was larger than that of the group of mice provided with protein. The re-
sults indicated that compared with the protein factor, the energy factor may exert a more significant effect on 
protein turnover and metabolism in the mammary gland and muscle tissues. 

In animals, the efficiency of protein turnover and metabolism is significantly affected by the level of dietary 
energy intake. Kita et al. conducted a study in which the protein level was kept constant and the metabolizable 
energy level was adjusted gradually from a state of deficiency to a state that met the needs of the animals. Kita 
et al. [9] found that the rates of whole-body protein synthesis and degradation were elevated in the animals. 
When dietary energy level was further increased to exceed the needs of the animals, the protein synthesis rate 
remained constant. In contrast, insufficient dietary energy intake resulted in limited protein synthesis in the ani-
mal’s body. However, the mechanisms by which energy intake affects protein turnover are not yet clear. Wu et 
al. has proposed that as the protein deposition rate increases, the energy cost per gram of protein deposition will 
increase accordingly. Insufficient energy intake has little effect on the protein synthesis rate, protein synthesis 
capability and protein synthesis efficiency in animal tissues and the body. However, insufficient energy intake 
results in an enhanced rate of muscle protein degradation, which provides amino acids for oxidative reaction and 
energy production. In the present study, the mRNA expression levels of the factors related to the ubiqui-
tin-proteasome pathway were significantly increased (P < 0.01). Except for PolyUbC, the mRNA expression le-
vels of the other examined factors increased the most in mice provided with only energy, suggesting that suffi-
cient energy would promote the activity of the ubiquitin-proteasome proteolytic pathway. In addition, significant 
differences were observed in the mRNA expression of factors related to the ubiquitin-proteasome pathway be-
tween different treatment groups. These results suggested that compared with the starvation treatment, the 
supply of protein may enhance the activity of the ubiquitin-proteasome proteolytic pathway and muscle tissue 
degradation and the magnitude of enhancement may be larger when adequate amounts of protein were provided 
in comparison to an insufficient protein supply. 

4.2. Changes in Hormone Levels 
In the present study, the blood hormone levels of lactating mice were examined, and the results showed that the 
level of GH was slightly elevated in the blood of the mice from the starved group. However, the difference was 
not statistically significant. Analysis of the expression of the casein gene showed that its expression level was 
increased in the starved group. A significant number of studies have confirmed that GH exerts a strong lacta-
tion-promoting effect and is capable of enhancing milk yield in dairy cows [10] [11]. Sakamoto et al. [12] found 
that in the absence of prolactin and insulin, GH acts directly on secretory epithelial cells in mammary glands and 
increases the expression of casein at both the gene and protein levels. Molento et al. found that the unique nutri-
tional distribution function of GH in the body allows more nutrients to be allocated to the mammary gland [13]. 
GH promotes the secretion of IGF-1 [14]. In dairy cows, the blood level of IGF-1 is often positively correlated 
with milk yield [15]. Using mammary tissues or mammary epithelial cells of dairy cows as experimental models, 
Sakamoto et al. demonstrated at the cell and tissue levels that GH promotes the synthesis of αs casein and the 
expression of the β-casein gene [12]. Furthermore, studies conducted by Glimm et al. and Baumrucker et al. 
confirmed the presence of GH and IGF-1 receptors in the mammary tissue of dairy cows [16] [17]. Therefore, 
GH may exert its effect either by directly acting on mammary glands or by stimulating the secretion of IGF-1, 
thus indirectly affecting mammary glands. 

A study by Prosser and Davis showed that the infusion of IGF-1 into the external pudendal artery significantly 
increased blood flow in mammary glands and elevated the secretion of mammary gland milk [18]. In addition, a 
study performed by Burgos et al. showed that IGF-1 promotes protein synthesis in the mammary epithelial cells 
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of dairy cows [19]. Dohm et al. found that IGF-1 displays a strong promoting effect on the development and 
anabolism of skeletal muscles and other organs [4]. IGF-1 exerts its effects on skeletal muscle through IGF-1 
receptors. By binding to its receptors, IGF-1 promotes the proliferation and differentiation of skeletal muscle 
cells, increases amino acid and glucose uptake in skeletal muscle cells, stimulates protein synthesis in skeletal 
muscle and inhibits protein degradation, thereby enhancing the net protein deposition in skeletal muscle. Studies 
have also shown that patients with protein malnutrition tend to have low levels of IGF-1. Liu et al. found that 
the IGF-1 concentration in bovine blood is related to dietary nutrient levels and dietary intake. The IGF-1 con-
centration is positively correlated with the concentration of casein in the diet. Some scholars have reported that 
the main factor affecting the blood concentration of IGF-1 is the crude protein level, and the response of IGF-1 
to the crude protein level is affected by the metabolizable energy concentration in the diet. A study conducted by 
Conlon et al. showed that that plasma IGF-1 concentration is strongly correlated with the plasma concentrations 
of nutrients [20]. The plasma IGF-1 concentration is decreased in fasting table poultry, and this decrease is ac-
companied by a reduced rate of pectoralis muscle protein synthesis. The plasma IGF-1 concentration returns to 
normal after supplementary feeding. Broiler chickens at 7 days of age were given intramuscular injections of 
IGF-1 (35 mg/chicken). At 6 h after injection, the relative rate of pectoral muscle protein synthesis was signifi-
cantly elevated, and the relative rate of the protein degradation was reduced, resulting in increased daily weight 
gain and nitrogen deposition. Comparing the two treatment groups in the present study that were supplied with 
proteins, the high protein group showed a IGF-1 level higher than that of the low protein group, which is con-
sistent with the findings described above. Breier et al. conducted a study of beef cattle and found that the plasma 
concentration of IGF-1 decreases only when the cattle are in a state of negative energy balance [21]. A study 
conducted by Williams et al. showed that improvement of dietary energy levels leads to a linear increase in the 
blood concentrations of insulin and IGF-1 in primiparous heifers [22]. The present study showed that IGF-1 le-
vels were markedly decreased in starved mice and in mice supplied with energy only (P < 0.01). In addition, the 
degradation of muscle tissue was increased. These results were consistent with the findings of the previous stu-
dies described above. However, the present study failed to detect any increase in the IGF-1 level in mice sup-
plied with energy in comparison to the starved mice, which is inconsistent with the general theory.  

Spomdly et al. utilized the hyperinsulinemic-euglycemic clamp technique to study the function of insulin [8]. 
The results have shown that the application of insulin leads to significantly increased milk protein content and 
yield. In nutritionally adequate cattle, the milk protein yield is increased by 25%. These results suggest that in-
sulin is a major endocrine regulatory factor controlling milk protein synthesis. In the present study, all of the 
treatment groups except for the starved group exhibited increased insulin content. However, no statistically sig-
nificant differences were detected between the groups. A study performed by Canfield and Butler showed that 
insulin is an important hormone regulating carbohydrate, fat and protein metabolism and maintaining stable 
blood sugar levels [11]. Insulin usually reflects the comprehensive balance between feed intake and milk yield. 
The insulin concentration is greatly affected by the energy levels. Insulin is a hormone that reflects the energy 
status of the body. In the present study, the changes in the insulin levels were not statistically significant. How-
ever, compared with the normal control group, the blood level of insulin was decreased after starvation and in-
creased when sufficient energy was supplied, indicating that insulin reflected the energy status of the body. 

4.3. Phosphorylation Levels of the Effectors of the mTOR Pathway and Expression Levels  
of Carrier Proteins in Mammary Gland and Muscle Tissues 

Studies have shown that once phosphorylated and activated, mTOR controls the translation of mRNAs in a spe-
cific subgroup through two disparate downstream pathways, the 4E-BP1 and the p70S6K pathways, and subse-
quently increases protein synthesis. In the present study, the phosphorylation levels of mTOR and 4EBP1 were 
elevated in mammary gland tissue. However, the changes were not statistically significant. In contrast, the 
downstream signaling molecule of mTOR, p70S6K, demonstrated a markedly increased phosphorylation level 
(P < 0.05). These results were consistent with the findings described previously that the expression of the casein 
gene was upregulated. Similarly, the phosphorylation levels of mTOR and 4EBP1 were also elevated in muscle 
tissue, but the differences were statistically insignificant. In addition, the increase in the muscle tissue was sig-
nificantly smaller than that in the mammary gland tissue. The phosphorylation level of p70S6K was markedly 
elevated, whereas it was significantly decreased when an insufficient amount of protein was supplied (P < 0.01). 

Research conducted by Humphrey et al. indicated that the adaptive response of animal tissues to different di-
etary components and nutrient levels is primarily reflected by changes in the type and amount of the transporters 
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of the nutrients in the body. The chemical composition of the diet directly or indirectly affects the expression of 
the transporters [23]. As an increasing number of cDNA sequences encoding mammalian amino acid transpor-
ters have been cloned, many studies have focused on the regulatory effect of dietary nutrient composition on the 
expression of amino acid transporters. Dietary nutrient levels, especially the protein (amino acid) levels, affect 
the regulation of amino acid transporter expression. To maintain cell survival under the conditions of amino acid 
deficiency, protein catabolism is increased in muscle cells, amino acid biosynthesis is elevated and an increasing 
amount of amino acids is transported across the membrane into the cells. In addition, the synthesis of the trans-
porter protein CAT-1 is enhanced. The levels of insulin and other hormones significantly affect the expression 
of the amino acid transporters. Simmons et al. treated quiescent muscle cells with a 10-fold increase of interleu-
kin-1 beta (IL-1β) and interferon gamma (IFN-γ) and found that the expression level of CAT-1 mRNA was ele-
vated. Under the action of cytokines, the expression level of CAT-1 mRNA was also increased. Shi et al. em-
ployed an animal model to investigate for the first time the effect of daily diet on the level of CAT-1 expression 
in pig intestine. Studies have shown that compared with a high protein diet, a low protein diet has a bigger im-
pact on the relative expression level of CAT-1 mRNA in the intestine of fattening pigs, especially in the jejunum. 
Using an in vitro culture method, Zhi et al. found that the abundance of CAT-1 mRNA expression increases as 
the lysine concentration increases. The difference was highly significant and dose-dependent. The present study 
showed that the expression of the Lys/Arg transporter CAT-1 was drastically elevated in mammary gland tissue 
(P < 0.05). Moreover, the increase in CAT-1 expression was more significant in mice supplied with protein after 
starvation compared to mice supplied with energy.  

In a study that employed BeWo cells as the experimental model, it was shown that changes in the substrate 
concentration affect the mRNA expression of a number of amino acid transporters. However, the tendency to 
increase or decrease varies among the transporters. Jones et al. found that essential amino acid deficiency in the 
body leads to a significantly decreased expression of sodium-coupled neutral amino acid transporter 1 (SNAT1) 
mRNA within 1 h. However, no obvious changes in sodium-coupled neutral amino acid transporter 2 (SNAT2) 
mRNA expression are detected within 1 h. In contrast, the level of SNAT2 mRNA increases at or after 3 h. Fur-
thermore, the level of SNAT2 mRNA expression is markedly elevated when the supply of amino acids increases 
[24]. Lys and Met are two major limiting amino acids for growth and milk protein synthesis. The present study 
showed that the expression level of the Met transporter protein ASCT2 was significantly reduced in muscle tis-
sue (P < 0.05). These results indicated that the amount of transporter protein was decreased, which might lead to 
declined protein synthesis in the muscle tissue. Compared with the starved group, mice that were given dietary 
protein showed a slightly decreased level of ASCT2. The results were consistent with findings from previous 
studies showing that the substrate concentration affects the expression of amino acid transporters. 

Energy metabolism is a very complex process. The mTOR signaling pathway is involved in the regulation of 
energy homeostasis. Energy-producing substances participate in energy regulation primarily through the liver 
kinase B1 (LKB1)-adenine monophosphate-activated protein kinase (AMPK)-tuberous sclerosis complex (TSC)- 
mTOR signaling pathway. AMPK is a sensor of cellular energy levels. Intracellular energy deficiency activates 
the AMPK protein. Activated AMPK inhibits mTOR activity and subsequently initiates ATP synthesis and pre-
vents ATP consumption, ceasing cell growth. When sufficient energy is available, AMPK functions as a “switch” 
to shut down the energy supply and ensures that the energy is released and utilized to promote cell growth. In 
addition, changes in the activation state of AMPK affect the activity and phosphorylation level of p70S6K, a 
downstream signaling molecule of mTOR, which will further affect mRNA translation in somatic animal cells 
and control protein synthesis. The hypothalamus senses changes in energy balance through the mTOR pathway 
and controls food intake through feedback mechanisms, thus contributing to the achievement of energy ho-
meostasis in the body. Abnormal mTOR signaling leads to disorders of energy metabolism. Excessive food in-
take-induced obesity has been observed in TSC1-knockout mice. Sobolewska et al. found that IGF-1 and epi-
dermal growth factor (EGF) activate mTOR in bovine mammary epithelial cells, whereas the inhibition of 
mTOR by rapamycin abolishes the inhibitory effect of IGF-1 and EGF on autophagy [25]. AMPK achieves its 
role as a sensor of cellular energy status through the negative regulation of mTOR. Bolster et al. found that the 
injection of rats with energy-providing substances does not alter AMPKα1 activity in gastrocnemius muscle. 
However, AMPKα2 activity was significantly enhanced [26]. Compared with the control group, muscle protein 
synthesis was reduced by 45% in the treatment group because the downregulation of mTOR by AMPK directly 
inhibits translation initiation and protein synthesis. Kimura et al. [27] treated human corneal epithelial cells with 
AMPK activator and found that the activity and phosphorylation of p70S6K, a downstream signaling factor of 
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mTOR, are suppressed. In addition, changes in glucose concentration also regulate the activity of AMPK and 
p70S6K. In the present study, p70S6K phosphorylation in both types of tissue was elevated in the starved group 
in comparison with the normal treatment group. However, the magnitude of increase was significantly lower in 
the muscle tissue compared to that in the mammary gland tissue. Compared with the starved group, mice sup-
plied with sufficient energy showed an increased level of p70S6K phosphorylation in both types of tissues (P < 
0.05, P < 0.01), which is consistent with previously published results. 

5. Conclusions 
When experiencing dietary amino acid deficiency, lactating mice enhance muscle tissue degradation to preferen-
tially meet the needs of lactation. In mammary gland tissue, the amount of utilized amino acid transporters is 
elevated, the phosphorylation level of the mTOR pathway is enhanced and the total amount of proteins synthe-
sized is increased. In muscle tissue, the protein phosphorylation level is also increased. However, the amount of 
utilized amino acid transporters is reduced, the total amount of proteins synthesized is decreased, and protein 
degradation is enhanced. 

Dietary amino acids and energy affect the activity of the ubiquitin-proteasome pathway, which is responsible 
for muscle tissue degradation. Adequate dietary amino acids and energy may enhance the activity of the path-
way. 

Hormones significantly affect the protein metabolism in mammary gland and muscle tissues. Among the 
hormones, the effect of insulin-like growth factors is especially remarkable. 
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