

Resonance Scattering Spectral Determination of Trace Chlorine in Water Using Cationic Surfactants

Weiming Mo¹, Caiyan Kang^{2,3*}

¹ College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, China
² School of Environmental Science and Resource, Guangxi Normal University, Guilin 541004, China
³The Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment, Guilin 541004, China
Email: kangcy_ok@126.com

Abstract: In acidic sodium acetate-HCl buffer solution containing KI, chlorine may oxidize I⁻ to form I₂, and then I₂ reacts with excess I⁻ to I₃⁻, which combines with cationic surfactans including tetradecyldimethyl benzylammonium chloride(TDMBA), tetradecylpyridinium bromide(TPB), cetyltrimethylammonium bromide(CTMAB) and tetrabutylammonium iodide(TBAI), respectively, to form association particles, which give resonance scattering(RS) effect at 467 nm. The RS intensity at 467 nm of the TDMBA, TPB, CTMAB and TBAI association particles systems is linear to chlorine concentration over the range of $0.008 \sim 1.24 \mu g/mL$, $0.029 \sim 1.79 \mu g/mL$, $0.083 \sim 2.22 \mu g/mL$ and $0.091 \sim 3.06 \mu g/mL$ Cl₂, respectively, with detection limits of $0.0032 \mu g/mL$, $0.0081 \mu g/mL$, $0.073 \mu g/mL$ and $0.012 \mu g/mL$ Cl₂, respectively. Based on this, a new, simple and sensitive analysis method for the determination of chlorine in water was developed. In the four systems, the TDMBA system possesses good stability and high sensitivity. The proposed method has been applied to the analysis of chlorine in water, with satisfactory results which is in agreement with that of the methyl orange (MO) spectrophotometry.

Keywords: chlorine; cathionic surfactants; association particles; resonance scattering

水中痕量氯的表面活性剂共振散射光谱分析

莫蔚明¹,康彩艳^{2,3*}

「广西师范大学化学与化工学院,桂林,中国, 541004
 ²广西师范大学环境与资源学院,桂林,中国, 541004
 ³广西环境工程与保护评价重点实验室,桂林,中国,541004
 Email: kangcy_ok@126.com

摘 要:在 HC1-NaAc 缓冲液中,C1₂能氧化 I⁻为 I₂,过量的 I⁻与 I₂形成 I₃,阳离子表面活性剂(CS)十 四烷基二苄基氯化铵(TDMBA)、溴代十四烷基吡啶(TPB)、十六烷基三甲基溴化铵(CTMAB)、四丁 基碘化铵(TBAI)等分别能与 I₃⁻发生缔合,形成缔合物在 467nm 处产生共振散射效应。C1₂浓度分别在 0.008~1.24µg/mL、0.029~1.79µg/mL、0.083~2.22µg/mL 和 0.091~3.06µg/mL 范围内与 TDMBA、 TPB、CTMAB 及 TBAI 缔合微粒体系的共振强度成线性关系。各体系的检测限分别为 0.0032µg /mL、 0.0081µg /mL、0.073µg/ mL 和 0.012µg /mL C1₂。据此建立了测定 C1₂的分析法。其中 TDMBA 体系最 稳定,且灵敏度也高。用于饮用水中 C1₂的测定,并与光度法对照,结果满意。

关键词: 氯; 阳离子表面活性剂; 缔合微粒; 共振散射效应

1 引言

氯气是一种常用的消毒剂和漂白剂, 广泛用于

饮用水、工业循环水及污水处理等方面。研究表明,Cl₂会与水中的有机质发生氯代反应生成致癌物卤 代烷。因此,建立一种灵敏度高、选择性好、简便快 速测定饮用水中氯气含量新方法具有重要的意义。目 前,测定氯气的方法主要有碘量法^[1]、分光光度法^[2]、

资助信息: 广西自然科学基金(2010GXNSFA013008); 广西环境工 程与保护评价重点实验室资助项目;广西师范大学博士科研启动基 金资助项目

原子发射光谱法(AES)^[3]、化学传感器^[4]、流动注射分 析法^[5]、离子色谱法^[6]、电流滴定法^[7]、化学发光法^[8]、 罗丹明染料的共振散射光谱法等^[9]。共振散射光谱具 有灵敏度高、选择性好、简便等特点,已用于生物大 分子、痕量金属、非金属离子的分析等^[9]。阳离子表 面活性剂(CS)是一类稳定、且在可见光范围无吸收 的共振散射(RS)分析试剂,但迄今未见用于 Cl₂的 阳离子表面活性剂共振散射光谱分析法报道。本文基 于 Cl₂的 I 反应生成 I₃, I₃可与 CS⁺形成具有共振散 射效应的缔合微粒,建立了一个灵敏度高、选择性好、 简便快速测定 Cl₂ 的阳离子表面活性剂共振散射光谱 新方法。

2 实验部分

2.1 仪器和试剂

岛津 RF-540 型荧光分光光度计(日本岛津),酸度计(上海雷磁 pHs-25)。

Cl₂标准溶液:约 300 μ g/mL,其制备方法参考文献^[2] 采用气体发生装置,用 KMn04 固体与浓盐酸反应制取。 Cl₂溶液浓度用碘量法标定,保存于 4°C 冰箱。 14.9 μ g/mL Cl₂工作液由标准溶液逐级稀释而成。乙酸 钠-HCl 缓冲液; 0.02 mol/L KI。TDMBA、TPB、CTMAB、 TBAI 浓度分别为 1.0×10⁻⁴、1.0×10⁻³、1.0×10⁻⁴、1.0 ×10⁻²mol/L..所用试剂均为分析纯,实验用水均为二 次蒸馏水。

2.2 实验方法

在 10mL 比色管中,分别加入 1.0mL pH 值为 5.20 的 NaAc-HC1 缓冲液,0.8 mL 0.02 mol/L KI (或 1.0 mL, 1.0mL, 0.5mL KI) 溶液,及一定量的 Cl₂溶液, 放置 3min,再加入 1.0 mL 1.0×10⁻⁴mol/L TDMBA (或 0.5 mL 1.0×10⁻³mol/L TBP、1.0 mL 1.0×10⁻⁴mol/L CTMBA, 1.5 mL 1.0×10⁻²mol/L TBAI),混匀,用二 次蒸馏水稀释至刻度 5mL,摇匀。同步扫描($\lambda_{ex} = \lambda_{em}$)得到体系的共振散光谱。测量 TDMBA、TPB、CTMAB 和 TBAI 体系在 467nm 处的共振散射光强度。

3 结果与讨论

3.1 共振散射光谱

同步散射光谱图 1a 表明, TDMBA 体系、TDMBA-I

体系和 Cl₂-I⁻体系的共振散射均很弱。当 TDMBA-I⁻体 系中加入Cl₂后,体系的共振散射光谱(图 1b、c 和 d) 在 320,、467 nm、480nm、530nm 处出现 4 个共振散射 峰。已知仪器光源、体系中游离分子的吸收及微粒的 共振散射效应三个因素引起共振散射峰¹⁰⁰,该仪器光 源的最强发射位于 470nm: 游离分子吸收导致共振散 射信号减弱,而4个共振散射峰增强,因此320,、467 nm、480nm、530nm 处的 4 个同步散射峰系(CS-I₃)_n 缔合纳米微粒的共振散射峰。因为阳离子表面活性剂 都是一种体积较大的阳离子 (CS⁺), 可与另一较大的 阴离子(I₁)通过静电力形成离子缔合物 CS-I₃,该缔 合物分子间存在较强的疏水性作用力和分子间作用 力,可自发聚集形成体积较大的(CS-I₂)。离子缔合微 粒。由于(CS-I₃)。离子缔合微粒和固液界面的形成, 增强了体系的共振散射强度。250nm 以下的共振散射 信号很弱,系由于光源入射光强度较弱所致。这4个 共振散射峰中 467nm 峰最灵敏, 故本文选择 467nm 作 为测量波长。同样 TPB、CTMAB 、TBAI 缔合微粒体系 也在 320,、467 nm、480nm、530nm 处出现 4 个共振散 射峰。

Figure 1. RS spectra of TDMBA system 图 1. TDMBA 体系的共振散射光谱 a:pH 5.20-3.2×10⁻³mol/L KI-2.0×10⁻⁵mol/L TDMBA

3.2 pH 的影响

本文考察了 pH (0.70-5.20) 对各体系 Δ I 值 (Δ I=I₈₅-I₈, I₈为空白值) 的影响。由图 2 可见, 对于 TDMBA、TPB、CTMAB 、TBAI 体系, pH 分别在 整个受试范围内 Δ I 值变化不大,这是因为在较宽 的酸度范围内氯的氧化能力较强,考虑干扰因素, 分别选择 pH 为 5.20, 其用量为 1.0mL。

3.3 KI 用量的影响

在实验方法条件下,随着 I浓度的增大,各体系 的⊿I 值均逐渐增大。对于 TDMBA、TPB、CTMAB 、 TBAI 体系,当 KI 的浓度分别增大到约 1.2×10^{-3} 、 3.2×10^{-3} 、 3.2×10^{-3} 、 3.2×10^{-4} mol/L 时,体系的⊿I 开始达到最大,表明此时反应完全,继续增大 KI 浓度 时,⊿I 值基本保持不变。TDMBA、TPB、CTMAB 、 TBAI 体系的 KI 浓度分别选用 3.2×10^{-3} 、 4.0×10^{-3} 、 4.0×10^{-3} 、 2.0×10^{-3} mol/L。

3.4 阳离子表面活性剂(CS)浓度的影响

随着 CS 浓度增大,各体系的 \triangle I 值均逐渐增大。 当 TDMBA、TPB、CTMAB 、TBAI 的浓度分别约 1.6×10^{-5} mol/L 、 4.0×10^{-5} mol/L 、 1.6×10^{-5} mol/L 、 2.0×10^{-3} mol/L 时,各体系的 \triangle I 值均达到最大,CS 浓 度增加时, \triangle I 值保持不变。本文选择 TDMBA、TPB、 CTMAB 、TBAI 的浓度分别为 2.0×10^{-5} mol/L 、 1.0×10^{-4} mol/L、 2.0×10^{-5} mol/L 和 3.0×10^{-3} mol/L。

3.5 体系的稳定性

根据实验方法,考察了反应时间对体系⊿I 值的 影响。结果表明,由于 CS 与 I₃的结合主要是靠静电 吸引力的作用,在室温条件下立刻发生反应且⊿I迅速达到最大值。对于 TDMBA 体系 20min 内基本不变;而 TPB、CTMAB、TBAI 体系⊿I 很快降低,10min内应完成测定。

3.6 标准曲线

在最佳实验条件下,考察了各体系的△I值与Cl₂ 浓度的关系(表 1)。从表中结果可知,TDMBA体系的检 测限要比 TPB、CTMAB和 TBAI体系低且稳定。故本文 选择 TDMBA体系 RS 测定 Cl₂含量。

Table 1. Analytical features of CS RS methods for Cl₂ 表 1. 阳离子表面活性剂 RS 测定 Cl₂的分析特性

体系 System	线性方程 Linear equation C(µg /mL)	线性范围 Linear range(µg /mL)	相关系数 r Correlation coefficient	检测限 Detection limit (µg/ mL)
TDMBA	△I=43. 47C+1. 21	0.008-1.24	0.9963	0.0032
TPB	△I=46. 44C-3. 21	0.029-1.79	0.9976	0.0081
CTMAB	△I=24.61C-2.42	0.083-2.22	0.9915	0.073
TBAI	△I=37.34C-1.38	0.091-3.06	0.9972	0.012
TDMBA	△I=43. 47C+1. 21	0.008-1.24	0.9963	0.0032
TPB	△I=46. 44C-3. 21	0.029-1.79	0.9976	0.0081
CTMAB	△I=24.61C-2.42	0.083-2.22	0.9915	0.073

3.7 共存物质的影响

按实验方法,考察了共存物质对体系的影响。当 C1₂的浓度为 0.870 µ g/mL,相对误差在±10%之间时, 10000 倍 NH₄⁺ 、SO₄²⁻、K⁺、Ca²⁺、Ba²⁺、Mg²⁺、Zn²⁺、 Mn²⁺,8000 倍尿素, 5000 倍 NO₃⁻、甲醇,柠檬酸钠、 3500 倍 C₂O₄²⁻, 2500 倍 ClO₃⁻,800 倍 F⁻, PO₄³⁻,500

Table 2. Analytical results of Cl₂ in samples

衣	2.	177 003	77 191	ㅋㅋ	2	

样 品 sample	测得值 found (µg ml ⁻¹)	平均值 Means value (µg ml ⁻¹)	RSD (%)	光度法 (µg ml ⁻¹ , n=5)
1	0.132,0.133,0.131,0.128,0.131	0.131	1.4	0.130
2	0.360,0.358,0.364,0.370,0.372	0.365	1.7	0.358
3	0.567,0.580,0.570,0.560,0.576	0.571	1.4	0.590
4	0.712,0.701,0.731,0.720,0.740	0.721	2.1	0.730
5	0.940,0.924,0.910,0.921,0.958	0.931	2.0	0.945

倍 Co²⁺、Ni²⁺, 50 倍 ClO₂、BrO₃, 15 倍 Fe³⁺ (NaF 掩蔽 50 倍), 10 倍 H₂O₂、Pb²⁺、ClO₂不干扰。可见, 一些水中常见的离子对测定无干扰, ClO₃、ClO₂、ClO₂ 等在水中的允许存在量也较大,故本法具有较好的选 择性。

3.8 样品分析

取一定量样品,按实验方法测定水中 Cl₂ 含量。 另取一定量样品用甲基橙光度法进行对比,结果如表 2,两法测定结果基本一致。

References(参考文献)

- [1] The State Environmental Protection Administration. Analysis method in Water and wastewater monitoring(Fourth edition)[M].Bejing: China Environmental Science Press,2006. 国家环保局,《水和废水监测分析方法》编委会.水和废水监 测分析方法(第四版)[M].北京:中国环境科学出版社,2006.
- [2] Song Xiaochun, Zhang Hongyu, Ping Haihong, Determination of chlorine in air and research questions[J], Control Instru. Chem. Indus. 2001,28(6),P 79-81.
 宋晓春,张玉红,平海宏.空气中氯气的测定及问题研究[J]. 化工自动化及仪表 2001;28(6),P 79-81.

- [3] Nakahara T, Nishida T. Analyte volatilization procedure for the determination of low concentrations of chlorine by atmospheric-pressure helium microwave-induced plasma atomic emission spectrometry[J]. Spectrochim Acta Part B 1998,53, P1209.
- [4] Ralfs M, Heinze J. Disposable optochemical sensor for the determination of chlorine concentrations in the ppb-range[J]. Sensors and Actuators B 1997,44, P 257.
- [5] Sakai A, Hemmi A, Hachiya H. Flow injection analysis for residual chlorine using Pb(II) ion-selective electrode detector[J]. Talanta 1998,45, P 575-81.
- [6] Zhang Lizhu, Chui Gaofeng, Yang Yanwei, Determination of Chlorine in Coals by Ion Chromatography[J], Yankuang Ceshi 1999,18,P 299-302.
 张丽珠,崔高峰,杨艳伟,离子色谱法测定煤中氯. 岩矿测试 1999,18,P 299-302.
- [7] Aieta EM, Roberts PV, Hernade ZM. Determination of chlorine dioxide, chlorine, chlorite and chlorate in water[J]. JAWWA 1984,76(1),P 64-70.
- [8] Marino DF, Ingic JD. Determination of chlorine in water by luminol chemiluminescence[J]. Anal Chem 1981,53, P 455.
- [9] Kang C Y, Xi D L, Zhou S M, Jiang Z L. A novel and selective spectral method for the determination of trace chlorine in water basing on the resonance scattering effect of rhodamine B- I₃⁻ association nanoparticles[J]. Talanta, 2006, 68, P974-978.
- [10] Kang C Y, Xi D L, Chen Y Y, Jiang Z L, Determination of trace chlorine dioxide based on the plasmon resonance scattering of silver nanoparticles[J]. Talanta, 2008, 74(4) ,P 867–870.