

Hydrogen Bonding and Intermolecular S…O Interaction in the Absorption Processes of SO₂

Jianbin Zhang^{1,*}, Zhanying Liu¹, Ning Zhu¹, Hailong Hong¹, Limin Han¹, Tong Zhang¹, Xionghui Wei^{2,*}

 ¹ College of Chemical Engineering, Inner Mongolia University of Technology, Huhhot 010051;
² Department of Applied Chemistry, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871 Email: tadzhang@pku.edu.cn (Zhang, J. B.) & xhwei@pku.edu.cn (Wei, X. H.)

Abstract: In previous work, isothermal gas-liquid equilibrium (GLE) data show that diethylene glycol (DEG) (1) + water (2) solutions (DEGWs) can be used as the promising medium for the absorption processes of SO₂, which showed that $w_1 = 0.60$ DEGW (mass fraction) presents the extreme minimum solubility of 110 mg·L⁻¹ to SO₂ when the SO₂ concentration in the gas phase was set at $\Phi_{SO2}=5 \times 10^{-4}$ and the solubility of SO₂ in pure DEG is 259 mg/L at the same gas phase composition. The UV, FTIR, ¹H-NMR, and fluorescence spectra in the SO₂ absorption processes in DEGWs were investigated to present important absorption mechanism for the design and operation of the absorption and desorption processes in flue gas desulfurization (FGD) processes. Based on the spectral results, the possibility of intermolecular hydrogen bonding formation by the DEG hydroxyl oxygen atom with the SO₂ molecule suflur atom are dicussed. The exsitence of these bonds benefits the absorption and desorption of SO₂ in DEGWs.

Keywords: Hydrogen Bond; S...O Interaction; Diethylene Glycol; Sulfur Dioxide; Flue Gas Desulfurization

Sulfur dioxide (SO₂) is an important atmospheric pollutant in the environmental protection, and therefore it is severe in environmental protection. Removal of SO₂ from flue gas is an increasingly important environmental challenge, on one hand, because of the lowering of the admissible emission limit, and, on the other hand, due to the fact that numberous desulfurization processes, such as limestone scrubbing that produces a large volume of solid waste. This letter is a continuation of the systematic program on the absorption processes of SO_2 in the binary mixtures of diethylene glycol (DEG) + water (DEGW)^[1]. DEG presents native hydrogen bonding sites that the potential desorption characters are presented in the regenerative processes of solutions dissolving SO₂; therefore, it has in this work and its simialr complexes in other studies been paid great attention to alcohol + water system for SO₂ removal ^[2-6].

In the previous work ^[1], $w_1 = 0.60$ DEGW (mass fraction of DEG in DEGW) presents the extreme minimum solubility of 110 mg·L⁻¹ to SO₂ when the SO₂ con-

centration in the gas phase was set at $\Phi_{SO2}=5 \times 10^{-4}$, and the solubility of SO₂ in pure DEG is 259 mg/L at the same composition. The present work was mainly focused on investigating absorption mechanism for the design and operation of the absorption and desorption process in flue gas desulfurization (FGD) with potential industrial application of DEG aqueous solutions.

In various DEGWs, the interactions of DEG with H_2O are due to the variational property of hydroxyl group in DEG because the band is found to shift toward higher frequency from 3356 cm⁻¹ to 3422 cm⁻¹ with increasing H_2O concentration. The bending vibrational frequency of H_2O changes from 1652 cm⁻¹ to 1645 cm⁻¹, which indicates that the interactions of DEG with H_2O result from the property of hydrogen atom in H_2O . Meanwhile, the stretching vibrational band of C-O-C in DEG is found to shift toward lower frequency from 1061 cm⁻¹ to 1057 cm⁻¹, which indicates that interactions can be related to the property of ether oxygen atom of DEG. Based on above results, the interactions between DEG and H_2O can be due to the following two ways: (1) intermolecular hydrogen bonding and interaction of hy-

This project was financed by foundation of Inner Mongolia Autonomous Region's Educational Commission (NJ10079) and Yongfeng Boyuan Industry Co., Ltd. (Jiangxi province, China).

drogen atom in H_2O with hydroxyl oxygen in DEG as the formations of $-CH_2CH_2O(H)\cdots$ HOH \cdots ; and (2) weak intermolecular hydrogen bonding and interaction of hydrogen in H_2O with ether oxygen in DEG as the formation of $-CH_2-CH_2-O(CH_2-CH_2-)\cdots$ HOH \cdots .

The electronic transitions blue shift from 208 nm to 195 nm with increasing H₂O concentration in DEGWs. The absorption band is assigned to the $n\rightarrow\sigma^*$ electronic transition of unshared electronic pair of hydroxyl oxygen atom in DEG because the $n\rightarrow\sigma^*$ electronic transition of H₂O and the $n\rightarrow\sigma^*$ electronic transition of ether oxygen atom in DEG are often found at the vacuum ultraviolet region. With increasing H₂O concentration, intermolecular hydrogen bonding and interaction of hydroxyl oxygen atom in DEG with hydrogen atom of H₂O easily happened; however, the hydrogen bonding and interaction makes the $n\rightarrow\sigma^*$ electronic transition of hydroxyl oxygen in DEG become more difficulty. Above results show that the intermolecular hydrogen bonding and interaction in the DEGW be formed as -CH₂CH₂O(H)···HOH····

In the DEG + SO₂ system, with increasing SO_2 concentration, the new absorption peak at 1327 cm⁻¹, which are reported at 1344 cm⁻¹ for SO₂ in non-complexing CCl_4 ^[7,8], can be attribute to the Vas of SO₂ because the IR and Raman spectra indicate the following values for the fundamental frequencies: symmetry stretching band (Vs)=1151.38cm⁻¹, δ =517.69 cm⁻¹, and Vas=1361.76 cm⁻¹. Meanwhile, the phenomenon that the Vas of SO₂ shifts towards lower wavenumber than $Vas=1361.76 \text{ cm}^{-1}$ can be due to the interaction of the sulfur atom in SO₂ with other atom. SO₂ molecule is known to be polar and the sulfur atom to be electropositive; thus, SO₂ behaves as an electron acceptor by the sulfur atom, and its interaction with hydroxyl oxygen atom (electronegative) in DEG should occur by the way of intermolecular S…O interaction, which can not be discussed in the previous EGW + SO₂ system ^[9]. Unfortunately, the symmetry stretching band (Vas) of SO₂ at 1151 cm⁻¹ is strongly masked by the vibrations of DEG. An interesting phenomenon was displayed. In the absence of SO₂, the stretching vibrational band of hydroxyl in DEG was observed at 3375 cm⁻¹. In the presence of SO_2 , the band was changed into a peakier band. The phenomenon could be due to that the addition of SO_2 affects the original hydrogen bonding and interaction among DEG molecules and forms the new intermolecular hydrogen bonding of hydroxyl hydrogen atoms in DEG with oxygen atoms in SO_2 and intermolecular S····O interaction.

The characteristic bands of DEG and SO₂ were respectively identified, but no information on a complexing reaction could be obtained. The absorption band of $n \rightarrow \pi^*$ electron transition of oxygen atom in SO₂ (π_3^4) is observed at 276 nm and the absorption intensity of the band increases with increasing SO₂ concentration. Another absorption band, which was mainly due to $\pi \rightarrow \pi^*$ electron transition of sulfur atom in SO₂ (π_3^4) and $n \rightarrow \sigma^*$ electron transition of hydroxyl oxygen atom in DEG, shifts from 208 nm to 219 nm and the absorption intensity of the band increases. The shift results from the intermolecular hydrogen bonding of oxygen atoms in SO₂ with hydroxyl hydrogen atoms in DEG and intermolecular S…O interaction. The bonding of oxygen atoms of SO₂ with hydroxyl hydrogen atoms of DEG results in the following two results: (1) the decreasing effects of oxygen atoms on sulfur atom of SO₂ make the $\pi \rightarrow \pi^*$ electron transition of sulfur atom in SO_2 change easier; (2) the decreasing effects of hydroxyl hydrogen atoms on hydroxyl oxygen atoms in DEG make the $n \rightarrow \sigma^*$ electron transition of hydroxyl oxygen atom in DEG change easier also.

The chemical shifts of hydrogen in -CH₂- appear at $\delta = 3.420 \sim 3.604$ ppm (8 H), and the chemical shift of hydroxyl hydrogen appears at $\delta = 4.640$, 4.626, and 4.612 ppm (2H) in the ¹H-NMR spectrum of pure DEG. However, with increasing SO₂ concentration, the signal changes into single peak and the chemical shift of hydrogen atoms in -OH groups shifts from $\delta = (4.640 \text{ to } 4.612)$ ppm to 4.507 ppm in DMSO. The phenomena can be due that the interaction of oxygen atoms in SO₂ bonding with hydroxyl hydrogen atoms in DEG increases shielding effect of hydroxyl hydrogen atoms in DEG, so that the signal changes into single peak and the signal of chemical shift of hydroxyl hydrogen in DEG move to-

wards higher magnetic field.

Stable state fluorescence spectra with selective excitation of DEG with increasing SO₂ concentration were recorded. Upon excitation at 205 nm, where the $n\rightarrow\sigma^*$ electron transition of oxygen atom of DEG absorbs, strong fluorescence with emission positions at 290-320 nm and 580-620 nm were observed. The fluorescence intensity of the $\sigma^*\rightarrow$ n electron transition of oxygen atom of DEG decreases with increasing SO₂ concentration. The phenomena can be due to the intermolecular interaction of the oxygen atom in DEG with SO₂ as the formation of S…O interaction.

In H₂O + SO₂ system, the recorded IR spectra of H₂O and H₂O + SO₂ are shown in the previous work ^[9]. From the spectra two special stretching bands are observed at 1332 cm⁻¹ and 1151 cm⁻¹, which can be attribute to the *V*as and *V*s of SO₂^[8].

According to above spectral results, it is expected that DEG bonds with SO_2 by the intermolecular hydrogen bonds of $-CH_2CH_2OH\cdots OSO\cdots$ and $S\cdots O$ interaction.

In DEGW + **SO**₂ **system**, In the recorded IR spectra of $w_1 = 0.60$ DEGW and $w_1 = 0.60$ DEGW + SO₂, the stretching band at 1329 cm⁻¹ was observed. Meanwhile, the phenomenon that the *V*as of SO₂ shifts lower wavenumber than *Vas*=1361.76 cm⁻¹ can be due to the interaction of the sulfur in SO₂ with hydroxyl oxygen in DEG by the way of S···O interaction. In the absence of SO₂, the stretching vibrational band of hydroxyl in DEG was observed at 3385 cm⁻¹ and the band was broad; in the presence of SO₂, the band was changed into a peakier band. The phenomenon can be due to the new hydrogen bonding of hydroxyl hydrogen in DEG with oxygen in SO₂ and intermolecular S···O interaction.

With increasing SO₂ concentration, the absorption band of $n \rightarrow \pi^*$ electron transition of oxygen atom in SO₂ is observed at 276 nm and the absorption intensity of the band increases. Meanwhile, the special absorption band red shifts from 197 nm to 211 nm and the absorption intensity of band increases also. The results show that $\pi \rightarrow \pi^*$ electron transition of SO₂ and $n \rightarrow \sigma^*$ electron transition of oxygen atom of DEG in $w_1 = 0.60$ DEGW with increasing SO₂ concentration.

The above results suggest the hydrogen bonding and interaction between hydrogen atoms in DEG and oxygen atoms in SO₂ occurred. When such hydrogen bonds are formed, hydroxyl hydrogen atoms in the DEG molecules are attracted by the oxygen atoms in SO₂ and the bond length between hydrogen atom and oxygen atom in EG molecules are elongated. Such an interaction decreases the double bond character of SO₂ and so induce a lower absorption frequency, as is observed. From the FTIR spectral results recorded on the aqueous solution, one can suppose that the DEG-SO₂ complex is the less stable, as suggested by its lower downshifted frequency and its stronger desorption capacity. Such a shift observed in FTIR spectra was attributed to the interactions of DEG with SO₂. Comparing the spectra of $w_1 = 0.60$ DEGW + SO_2 and $w_1 = 0.60$ DEGW, it is observed that the H-O-H bending band and the characteristic bands of DEG are not obviously shifted in the mixture under the influence of SO₂. The constant H-O-H bending band in the absorption processes of SO₂ is mainly due to the hydrogen interaction of DEG and SO2 rather than the reaction of water and SO₂. Meanwhile, FTIR results support that there are S…O interaction of the sulfur atom in SO₂ with hydroxyl oxygen atom in DEG. The hydrogen bonding and interaction of SO₂ with DEG is very useful to desorb SO₂ from DEGWs by pressure reduction, by temperature rise, and by use of a carrier gas in following work. But above results only give us the present information, the exact molecular mechanism of interactions requires further investigation. But in $w_1 = 0.06$ DEGW, which shows lower solubility to SO_2 ^[1], the hydrgen bonding and S···· O interaction among molecules present passive effects on the absorption of SO2 in DEGW. Stable state fluorescence spectra with selective excitation of DEGW with increasing SO₂ concentration were recorded. Upon excitation at 205 nm strong fluorescence with emission positions at 290-320 nm and 580-620 nm were observed. The fluorescence intensity of the $\sigma^* \rightarrow n$ electron transition of oxygen atom of DEG in DEGW decreases with increasing SO₂ concentration, which was due to the interaction of the oxygen atom in DEG with SO₂ as the formation of

S····O interaction.

DEGW presents native hydrogen bonding sites for the absorption of SO₂ so that the absorption and desorption properties of SO₂ can be related to hydrogen bonding and interaction ^[10, 11] among molecules. Present results show that the possible interactions in DEGW result from the following two ways: (1) hydrogen bonding and interaction of hydrogen atom in H₂O with hydroxyl oxygen atom in DEG by cross-linking as the formation of -CH₂CH₂O(H)···HOH···; (2) hydrogen bonding and interaction of hydrogen atom in H₂O with ether oxygen DEG formation atom in as the of -CH₂-CH₂-O(CH₂-CH₂-)···HOH····. In addition, in the absorption processes of SO₂ in pure DEG or $w_1 = 0.60$ DEGW, the spectral analyses suggest that SO₂ can interact with DEG by hydrogen bonds as ... OSO ... -OCH2CH2O-H···OSO···, and intermolecular S···O interaction of hydroxyl oxygen atom of DEG with sulfur atom of SO₂.

References

- Zhang, J. B.; Chen, G. H.; Zhang, P. Y.; Han, F.; Wang, J. F.; Wei, X. H. Gas-Liquid Equilibrium Data for Mixture Gas of Sulfur Dioxide + Nitrogen with Diethylene Glycol + Water at 298.15 K and 123.15 kPa [J], J. Chem. Eng. Data 2010, 55, 1446-1448.
- [2] Li, X. X.; Liu, Y. X.; Wei, X. H. Hydrolysis of Carbonyl Sulfide in Binary Mixture of Diethylene Glycol Diethyl Ether with Wa-

ter [J], *Chinese J. Chem. Eng.* **2005**, *13*(2), 234-238.MENG Xiangping GAO Yan. Electric systems analysis [M]. Beijing: Higher Education Press, 2004. 3–21.

- [3] Wei, X. H.; Zhang, J. B.; Zhang, P. Y.; Zhang, L. W.; Li, X. B.; Wan, M. J. Removal of SOx from Flue Gas by Ethylene Glycol [P], CN. Patent. 101053746. 2007 (Ch).
- [4] Zhang, J. B.; Zhang, P. Y.; Chen, G. H.; Han, F.;Wei, X. H. Gas-Liquid Equilibrium Data for Mixture Gas of Sulfur Dioxide/Nitrogen with Ethylene Glycol at Temperatures from 298.15 K to 313.15 K under Low Pressures [J], J. Chem. Eng. Data 2008, 53, 1479-1485.
- [5] Zhang, J. B.; Zhang, P. Y.; Han, F.; Chen, G. H.; Deng, R. H.; Wei, X. H. Gas-Liquid Equilibrium Data for Mixture Gas of Sulfur Dioxide/Nitrogen with Ethylene Glycol Aqueous Solutions at 298.15 K and 123.15 kPa [J], J. Chem. Eng. Data 2008, 53, 2372-2374.
- [6] Zhang, J. B.; Han, F.; Zhang, P. Y.; Chen, G. H.; Wei, X. H. Gas-Liquid Equilibrium Data for Mixture Gas of Sulfur Dioxide + Nitrogen with Poly(Ethylene Glycol) Aqueous Solutions at 298.15 K and 122.61 kPa [J], J. Chem. Eng. Data 2010, 55, 959-961.
- [7] Lasgabaster, A.; Abad, M. J.; Barral, L.; Ares, A. FTIR Study on the Nature of Water Sorbed in Polypropylene (PP)/Ethylene Alcohol Vinyl (EVOH) Films [J], *Eur. Polym. J.* 2006, 42, 3121-3132.
- [8] Potteau, E.; Levillain, E.; Lelieur, J. P. Mechanism of the Electrochemical Reduction of Sulfur Dioxide in Non-aqueous Solvents [J], J. Electroanal. Chem. 1999, 476, 15-25.
- [9] Zhang, J. B.; Zhang, P. Y.; Han, F.; Chen, G. H.; Zhang, L. W.; Wei, X. H. Hydrogen Bonding and Interaction in the Absorption Processes of Sulfur Dioxide in Ethylene Glycol + Water Binary Desulfurization System [J], *Ind. Eng. Chem. Res.* 2009, 48, 1287-1291.
- [10] Ivopoulos, P.; Sotiropoulou, M.; Bokias, G.; Staikos, G. Water-soluble Hydrogen-bonding Interpolymer Complex Formation between Poly (ethylene glycol) and Poly(acrylic acid) Grafted with Poly(2-acryla-mido-2-methylpropanesulfonic acid) [J], *Langmuir* 2006, 22, 9181-9186. Schofield, D. P.; Lane, J. R.; Kjaergaard, H. G. Hydrogen Bonded OH-stretching Vibration in the Water Dimer. J. Phys. Chem. A [J], 2007, 111, 567-572.