

A Study of In-Situ Multilayer Tape Casting Ba₃Ca_{1.18} Nb_{1.82}O_{9-δ} Membrane for Proton Conducting Solid Oxide Fuel Cell

Shang-quan Zhang*

College of Light-Texitle Engineering and Art, Anhui Agriculture University Hefei Anhui 230036 P.R.China zhshquan@yahoo.cn

Abstract: In this study, $Ba_3Ca_{1.18}Nb_{1.82}O_{9-\delta}$ (BCN18) /BCN18-NiO membrane was prepared by in-situ Multilayer tape casting method. The starting materials were $BaCO_3$, $CaCO_3$ and Nb_2O_5 for BCN18 Electrolyte and $BaCO_3$, $CaCO_3$, Nb_2O_5 , NiO and starch for BCN18-NiO anode. The perovskite phase of anode and electrolyte were then formed by in-situ solid reaction. The phase characterizations and microstructures were studied by X-ray diffraction (XRD) and Scan Electronic Microscopy (SEM). The anode-electrolyte bi-layers were sintered at 1450°C. The electrolytes were extremely dense with pure perovskite phase and the thickness was about 25μ m. The anodes were porous and no obvious reaction was found between NiO and BCN18. The open current voltage of cell with BCN18 electrolyte is 1.03V at $700^{\circ}C$ and 1.01V at $600^{\circ}C$. With $La_{0.3}Sr_{0.7}FeO_{3-\delta}$ as cathode, the cell performance is 33mW/cm² at $700^{\circ}C$ and 25mW/cm² at $600^{\circ}C$.

Keywords: tape casting, proton conducting ceramics, slurry, co-firing

双层流延法制备 Ba₃Ca_{1.18}Nb_{1.82}O₉₋₈ 高温质子导体膜研究

张尚权*

安徽农业大学轻纺工程与艺术学院 合肥 230036 Zhshquan@yahoo.cn

摘 要:本文利用双层流延结合原位反应法制备Ba₃Ca_{1.18}Nb_{1.82}O_{9-δ} (BCN18) /BCN18-NiO双层膜, BCN18电解质的制备原料为BaCO₃,CaCO₃,Nb₂O₅。BCN18-NiO阳极的制备原料为 BaCO₃,CaCO₃,Nb₂O₅,NiO。使用XRD和扫面电镜检测电解质和阳极的相结构和电池微观形貌。采 用丝网印刷制备La_{0.7}Sr_{0.7}FeO_{3-δ} (LSF) 阴极。制备的BCN18电解质厚度为20µm左右,致密度很高, 阳极和阴极为多孔。所制备的BCN18单电池在700℃时开路电压和性能达到0.9V和36mW/cm²。

关键词: SOFC, 流延, Ba₃Ca_{1.18}Nb_{1.82}O_{9-δ}, 质子导体, 电解质。

1 引言

随着能源技术的发展,人们逐渐认识到传统的 化石燃料能源利用方式有两大弊病。一是煤、石油、 天然气等化石能源燃料的转化率较低,由于受卡诺 循环的限制,转化率只能达到35%左右;二是传统 的能源利用方式给环境造成了很大的污染,给社会 的可持续发展带来了严重的问题。化石燃料的燃料 会给大气中带来大量的CO2以及NO_x,SO2等温室气 体和污染性气体。燃料电池^[1](Fuel Cell)是继水力、 火力和核能发电之后的第四代发电技术。它是一种将化学能直接转化成电能的电学装置,其可以直接以电化学反应的方式将燃料的化学能转变成电能,同时不经过燃烧,从原理上来讲,其效率不受卡诺循环的限制,具有能量转化率高(可高达 85%)和对环境友好(微量的 NO_x、SO₂和噪音排放)等优点。

目前最广泛使用的固体氧化物燃料电池的电 解质材料都是高温氧离子导体,比如掺杂 ZrO₂等, 其中最流行的为 Y 掺杂的 ZrO₂ (YSZ)。YSZ 材料

在高温 SOFC 电池中占有比较大的优势, 但是也由 于其工作温度高,给电池的封装和集成带来了一些 困难。自上世纪 Iwahara^[2]发现掺杂的 SrCeO₃和 BaCeO3具有纯的质子导电性,陶瓷质子导体成为燃 料电池电解质材料的研究热点。随着研究的深入, 各种不同的质子导体不断被发现。但是目前最经典 的还是掺杂的 BaCeO3和 BaZrO3体系。其中掺杂的 BaCeO3的质子导电率最高,但是其稳定性很差,在 水和 CO₂的环境中都容易分解,而掺杂锆酸钡质子 导体体系的稳定性很强,但是其电导率去比较低。 从材料的综合性能考虑,人们在 BaCeO₃ 中掺杂 Zr 以达到电导率和稳定性的平衡, 文献中有很多报道 研究关于 BaCexZr1-xO3 的电导率和稳定性的关系 ^[3]。随着 Zr 掺杂量的增加,体系的稳定性加强,但 是烧结难度和晶界电阻都会增加。Meilin Liu^[4]等发 现用部分 Zr 取代 Ce 可以兼顾体系的电导率和稳定 性, Tao Shanwen^[5]等人也发现 Zn 对 BaCeO₃ 掺 Zr 体系有很好的助烧作用。随着研究的深入,一些新 的质子导体不断被人发现。在新的质子导体中, Ba3Ca118Nb182O9-6(BN18)的电导率能和 BaCeO3基 材料相差不多^[6]。Nowick^[7]等报道,BCN18的质子 电导率在 600℃可以达到 0.01S/cm, 质子迁移数大 于 0.99, 这与传统的掺杂铈酸钡相当, 而且其稳定 性也比 BaCeO3基材料高很多,有研究标明 BCN18 材料在水和 CO2 中都保持着很好的稳定性。这预示 着 BCN18 作为质子导体陶瓷膜的燃料电池可能重 要的应用前景。

目前质子导体电解质 SOFC 的制备方法基本上 都是压片方法^[7]。而在传统的电解质制备方法中, 流延法具有大面积电池生产的能力,所以使用流延 法制备质子导体陶瓷膜燃料电池对未来的实用化 有重要的应用价值。目前很少有人研究制备可大规 模生产的流延质子导体膜及其电池材料,这主要有 两个原因:一个是粉体的制备困难,想要获得高活 性的粉体就要用液相法制备,但是使用柠檬酸和甘 氨酸法大规模制备铈酸钡粉体的技术还不是很成 熟,另一方面就是铈酸钡和锆酸钡都不是很容易烧 结的陶瓷样品。而原位反应法制备无机陶瓷膜的技 术有着很广泛的应用,因为其方便快捷,省去了中 间制粉的步骤^[9-15]。Y.J. Leng 等使用 Gd₂O₃和 CeO₂ 为原料,采用喷雾法直接制备 GDC 薄膜,使用 La_{0.8}Sr_{0.2}Co_{0.2}Fe_{0.8}O₃ (LSCF)-Gd_{0.1}Ce_{0.9}O_{1.95} (GDC) 为阴极, 电池在 550℃的性能达到 350mW/cm^{2[9]}。 Lei Bi 也用类似的方法制备了非常致密的 BaCe_{0.8}Sm_{0.2}O_{3.6}^[13]和 Ba₃Ca_{1.18}Nb_{1.82}O₉₋₆^[15]电解质薄

膜。由于一般的质子导体(铈酸钡和锆酸钡)的强 度较低,所以人们就想在强度较好的 YSZ 衬底上制 备质子导体薄膜。但是铈酸钡和锆酸钡会和 YSZ 在 高温下会发生反应,为了能够解决铈酸钡和锆酸钡 电解质和 NiO/YSZ 阳极在烧结温度下发生反应,人 们在制备工艺上采取了一些措施。JoséM. Serraw^[16,17]等首先制备出 Ni-YSZ/YSZ 或者 Ni-GDC/GDC 阳极电解质双层膜,然后再在电解质 表面丝网印刷 BaCO₃最后反应成膜制备出

BaZr_{0.85}Y_{0.15}O₃和 BaCe_{0.8}Gd_{0.2}O₃电解质薄膜,虽然 这些电解质薄膜通过电镜,EDX 等检测手段表明膜 是纯相,表明使用这种方法可以制备出纯相的质子 导体电解质薄膜,但是其制备出的电池未能测出性 能。在本研究中我们避开了粉体成相这一个中间过 程,采用原位反应流延法成功的一次制备出多孔阳 极和致密电解质薄膜,并表征了由此电解质构成的 电池性能,取得了较好的结果。

2 实验过程

流延法⁽⁹⁾制膜的主要程序是:首先把粉料在溶 剂、分散剂中分散球磨球磨;再加入粘结剂和增塑 剂,球磨制备成稳定的具有一定粘度和流动性的浆 料。制备出来的浆料中含有大量的气泡,需要除去, 否则就会在生坯表面留下缺陷,一般除气的方法就 是采取抽真空搅拌的办法。除过气的浆料可以进行 流延,干燥,形成生坯。流延后的生坯要有一定的 弹性和塑性,容易褪膜,这些性质与浆料中有机添 加剂的比例与添加量关系很大。最后将生坯经过高 温烧结可以得到所需要的陶瓷样品。

为了适应大规模制备技术的需要,我们利用流 延法制备质子电解质和阳极的原料都是初始氧化 物。首先制备电解质浆料,固含量为45%,制备 Ba₃Ca_{1.18}Nb_{1.82}O_{9-δ}(BCN18)的电解质原料为 BaCO₃,Nb₂O₅,CaCO₃,电解质浆料经流延干燥后。再 制备阳极浆料,固含量55%,阳极浆料所用的原料 为BaCO₃,Nb₂O₅,CaCO₃,NiO,把制备好的阳极浆料 流延到干燥好的电解质生坯上去,将制备的方片在 高温下烧结得到半电池。阴极所用的材料为 La_{0.7}Sr_{0.3}FeO₃₋₈。将阴极粉料和乙基纤维素(松油醇) 的溶剂混合均匀,将制备好的阴极浆料在电解质表 面使用丝网印刷法制备阴极,烧结后在涂上银浆作 为集流件。电池用导电胶(上海合成树脂研究所 DAD-87)封装在两端开口的刚玉管的一端,在阴 极表面均匀的涂上一层银浆作为集电层,分别从阴 极、阳极引出两根丝作为电流线。测试时,先把电池由室温升至所需的测试温度,通入氢气还原 NiO 成金属 Ni,待电池的开路电压稳定后,开始测试。测试时采用的气氛为氢气(加 3%H₂O)-空气。

3,结果和讨论

BCN18 的主要缺点是更难烧结, 文献报道的 BCN18 烧结温度都在 1600℃左右, 如此高的烧结 温度只能制备电解质支撑 SOFC, 但是如果想要制 备电极支撑的燃料电池就很难实现。BCN18的烧结 活性是其薄膜化的的一个瓶颈难题,所以关于 BCN18 薄膜化的报道很少, Fehirnger^[18]等使用等离 子喷涂的方法在 LSM 阴极上制备出 100um 的 BCN18 电解质层,在 1600℃的高温烧结并使致密 化, 然后涂覆 NiO 作为阳极。由于过高的烧结温度 使得阴极衬底基本烧死,测出的电池性能也很低, 在 800℃只有 60µW/cm²。在先前的工作中^[15],我们 使用喷雾结合原位反应法的方法法制备出了致密 的 BCN18 薄膜, 膜厚大约为 15um, 电池性能达到 40mW/cm²。在本实验中,我们采用上述方法利用 流延法制备出 BCN18/NiO-BCN18 半电池, 经烧结 和涂覆阴极后,成功制备出了 BCN18 基质子导体 陶瓷膜 SOFC 电池,并进行了电学性能测试。 图 1 是 BCN18/NiO-BCN18 半电池的 XRD, 阳极电

解质烧坯体烧结到 1480℃,比文献中的烧结温度要低 100 多度。从图中可以看出阳极和电解质基本上都是纯相,没有看到杂相生成,此结果反应原位流延法是一个制备 BCN 电解质和阳极的有效方法。

图 2 是阳极支撑 BCN18 电解质烧结后的电镜

形貌,可以看出电解质厚度大约在 15μm 左右,只 有少数的闭气孔,看起来比较致密,而阳极和阴极 都保持多孔结构。从表面的电镜照片还可以看出, 晶粒大小约为 4μm 左右,与文献报道中在 LSM 衬 底上制备的 BCN18 薄膜在 1600℃烧结的晶粒大小 相似。说明原位反应法制备的 BCN18 薄膜的烧结 活性要比用 BCN18 粉体制备的薄膜

图 3 是 BCN18 单电池的性能曲线和阻抗曲线。 单电池在 550℃, 600℃, 650℃和 700℃测试的开路

Fig.2 SEM photos of cross-section and surface morphology of single cell 图2 BCN18单电池断面和表面烧结形貌

电压分别为 0.99V, 0.96V, 0.93V 和 0.9V。而用能 斯特方程计算的电池理论开路电压分别为 1.159V, 1.152V, 1.147V, 1.141V, 两者比较接近, 说明电解 质还是比较气密的。 电池在 550℃, 600℃, 650℃, 和 700℃ 的最大功率密度分别为 19.7 mW cm⁻², 25.9 mW cm⁻², 30.5 mW cm⁻², 36.2 mW cm⁻²。电池 的功率密度和开路电压相对于铈酸钡电解质基的 电池其功率密度还是比较低的。一般认为 BCN18 电解质对电极的选择很挑剔,所以目前亟待需要发 展适合 BCN18 的阴极材料。

Fig.3 Performance of a single cell 图3 BCN18电解质电池性能曲线

4, 结论

通过双层流延结合原位反应的方法制备出了 BCN18/BCN18-Ni0 双层膜。烧结后 BCN18 电解质薄 膜的厚度达到 15μm。同时阳极的孔隙率在在还原

前有 20%左右。通过 XRD 分析,阳极和电解质都 是纯相,没有发生明显的界面反应。电池在在 550℃, 600℃, 650℃和 700℃测试的开路电压分别为 0.99V,0.96V,0.93V和0.9V。电池在 550℃,600℃, 650℃,和 700℃ 的最大功率密度分别为 19.7 mW cm⁻², 25.9 mW cm⁻², 30.5 mW cm⁻², 36.2 mW cm⁻²。

References (参考文献)

- [1] W.R. Grove, Philos. Mag. 14 (1839) 127.
- [2] N.M.Sarnrnes, Zhihong Cai, Solid State Ionics 100 (1997) 39-44
- [3] Zhimin Zhong, Solid State Ionics 178 (2007) 213–220
- [4] Chendong Zuo, Shaowu Zha, Meilin Liu, Masaharu Hatano, Makoto Uchiyama, Adv. Mater. 18(2006) 3318–3320
- [5] S.W. Tao, J.T.S. Irvine, Adv. Mater. 18 (2006) 1581–1584.
- [6] S. Valkenberg, H.G. Bohn, Solid State Ionics 97 (1997) 511–515.
- [7] Y. Du, A. S. Nowick, Solid State Ionics,97(1996)85-91
- [8] H. G. Bohn, T. Schober, T. Mono ,W. Schilling, Solid State Ionics,117(1999)219-228

- [9] T. Schober, H.G. Bohn, T. Mono, W. Schilling, Solid State Ionics 118 (1999) 173–178
- [10] T. Schober, J. Friedrich, D. Triefenbach, F. Tietz, Solid State Ionics 100 (1997) 173-181
- Bin Lin, Mingjun Hu, Jianjun Ma, Yinzhu Jiang, Shanwen Tao, Guangyao Meng, Journal of Power Sources 183 (2008) 479–484
- [12] Y.J. Leng, S.H. Chan, S.P. Jiang, K.A. Khor, Solid State Ionics 170 (2004) 9-15
- [13] José M. Serra, Wilhelm A. Meulenberg, J. Am. Ceram. Soc., 90 [7] (2007)2082–2089
- [14] Lei Bi, Shangquan Zhang, Shumin Fang, Zetian Tao, Ranran Peng, Wei Liu, Electrochemistry Communications 10 (2008) 1598–1601
- [15] Lei Bi, Shangquan Zhang, Shumin Fang, Lei hang, J. Am. Ceram. Soc., 91(2008)3806-3809
- [16] José M. Serraw, Wilhelm A. Meulenberg, J. Am. Ceram. Soc., 90 [7] (2007)2082–2089
- [17] Wilhelm A. Meulenberg, José M. Serraw, Tilman Schober, Solid State Ionics 177 (2006) 2851–2856
- [18] G. Fehringer, S. Janes, M. Wildersohn, R. Clasen, Journal of the European Ceramic Society,24(2004)705-715