

Formation Properties and Characterization of Nano-Clusters during Solidification Processes of Liquid Metals Al

Rang-su Liu^{1,*}, Hai-rong Liu², Li-li Zhou¹, Ze-an Tian¹, Yong-chao Liang¹

¹ Department of Physics, Hunan University, Changsha, 410082, China ² College of Materials Science and Engineering, Hunan University, Changsha, 410082, China *Email: liurangsu@sina.com

Abstract: A simulation study has been performed for a large liquid metal system consisting of 1,000,000 Al atoms to investigate the formation and evolution of nano-clusters during the solidification processes, adopting the Honeycutt-Andersen (HA) bond-type index method and the cluster-type index method (CTIM-2) to analyze and characterize various types of basic clusters. The result indicates that during the solidification processes of liquid metal Al, the basic icosahedron clusters of (12 0 12 0 0 0), related to 1551 bond-type plays the most important role in the microstructure transition; The nano-clusters are mainly formed by the mutual combination of basic icosahedron clusters and other basic clusters of (13 1 10 2 0 0), (14 2 8 4 0 0) and so on. Within the nano-clusters, the center atoms of various basic clusters are all bonded each other with single-bond or multi-bonds, and the more the number of the center atoms bonded with multi-bonds, the more stable the nano-cluster would be. In this system, there are always a few basic cluster of hcp (12 0 0 0 6 6) and tDh (12 0 2 0 0 10) related to the crystal structures.

Keywords: liquid metal; solidification processes; nano-cluster structure; characterization method; computer simulation.

液态金属 AI 凝固过程中纳米级团簇的形成特性 与表征研究

刘让苏¹,刘海蓉²,周丽丽¹,田泽安¹,梁永超¹

¹湖南大学物理与微电子科学学院,长沙,中国,410082 ²湖南大学材料科学与工程学院,长沙,中国,410082

Email: liurangsu@sina.com

摘 要: 本文采用分子动力学方法对含有 100 万个 AI 原子的液态金属大系统的凝固过程进行了模拟 跟踪研究,特别对其中纳米级大团簇结构的形成与演变,采用 Honeycutt-Andersen (HA)键型指数法和 原子团类型指数法 (CTIM-2)进行了深入的基本原子团分析与表征。结果表明:对液态金属 AI 的凝 固微结构的变化起关键作用的是与 1551 键型密切相关的二十面体基本原子团 (12 0 12 0 0 0);纳米 级大团簇结构主要是由二十面体基本原子团与其它基本原子团 (13 1 10 2 0 0),(14 2 8 4 0 0)等结合 而成。组成纳米级大团簇结构各基本原子团的中心原子是彼此相互成多键或单键连接的,团簇结构内 呈多键结合的中心原子的数目越多,团簇将越稳定。系统中一直存在着极小量的与晶态结构相关的六 角密集 (hcp)基本原子团 (12 0 0 0 6 6)与 截角十面体 (tDh)基本原子团 (12 0 2 0 0 10)。

关键词:液态金属;凝固过程;纳米团簇结构;表征方法;计算机模拟

1 引言

关于团簇结构、特别是纳米级大团簇结构的形成

基金项目:国家自然科学基金(50831003; 50571037)

特性的研究,目前虽已成为物理学、化学和材料科学 中一个非常活跃的研究领域^[1-9],但对液态金属凝固过 程中团簇结构、特别是纳米级团簇结构的形成及特性, 还远未得到深入的研究。可是,这一类大团簇结构的 形成及特性的研究对于深入理解整个金属凝固过程中 微观结构的演变机理却起着十分重要的作用。然而, 为要深入研究液态金属凝固过程中纳米级团簇结构的 形成、演变特性,就必须对整个凝固过程进行跟踪探 讨。但在目前的实验条件下,要实现跟踪研究却是难 以完成的。随着计算机技术的飞速发展,已有可能将 分子动力学这一物理概念和物理图像都十分清晰的方 法应用于对液态金属凝固过程中微观结构组态的瞬变 过程,进行模拟跟踪研究。由于算法的不断改进,其 所能模拟研究的系统,也在不断扩大。特别是并行算 法的引入,已使我们模拟研究的系统由原来 500 - 1000 个原子的小系统^[10-11],逐步扩大到 5 万、10 万、40 万直至 100 万个原子的大系统,并相继取得了比较重 要的研究结果^[12-14]。

本文在己有研究工作的基础上^[12-14],进一步对 100万个AI原子系统的凝固过程进行了模拟研究,在 "中心原子法"^[10]的基础上,进一步采用"原子团类型 指数法"^[10-12],深入分析凝固过程中各种原子团、特 别是大团簇结构的形成、演变机理,在纳米级团簇结 构的形成和稳定性方面获得了一些新的认识和理解。

2 计算机模拟条件与方法

模拟计算的条件为:将 1,000,000 个 Al 原子置于 一立方体盒中,按周期性边界条件运行,其原子间相 互作用势采用由 Wang^[15, 16]等人所发展的扩展非局域 模型膺势理论中的双体有效势函数

 $V(r) = \left(Z_{eff}^2 / r \right) \left| 1 - \left(\frac{2}{\pi} \right) \int_{0}^{\infty} dq F(q) \sin(rq) / q \right|$

式中 Z_{eff} 和 F(中分别表示有效离子价和归十化能 量波数特性函数,其定义详见文献 [15,16]。双体势的 截止距离为 20 a.u. (原子单位)。运行的时间步长为 10⁻¹⁵ s。

模拟计算从 943K(Al 的熔点为 933K)开始,首先 让系统等温运行,使之处在平衡态(以系统的能量处 于平衡为准)。然后再让系统以 8.4×10¹² K/s 的速度快 速冷却至所拟定的温度:900,850,800,750,700,650, 600,550,500,450,400,350 和 300K 等点,在每一个 温度点测量该系统的结构组态,即每个原子的空间坐 标,再用 Honeycutt-Andersen (HA)键型指数法^[17]和原 子成团类型指数法^[11-13]进行结构分析,以测定各有关 原子成键类型和成团类型及其指数,以进行各种分析 比较,进一步探讨原子团、特别是大团簇结构的形成 特性与稳定性。

必须强调指出:我们这里在记录每一个温度点的

结构组态数据方面,已经改变了通常在 500 -1000 个 原子的小系统中的作法(即在每一个温度点再让系统 等温运行 4000 步,每 200 步记录 1 次结构数据,共获 得 20 组结构数据,再进行统计平均,以确定该温度下 的结构组态的方法),而是采用只等温运行 2 步,记录 1 次数据。其目的在于尽量减小由于等温运行时的步 数过多将对系统微结构组态所带来的影响,因而其结 果将更接近于在该温度下的实际瞬态状态。同时,由 于系统本身已经拥有足够多的(100 万个)原子,相 当于 1000 个原子小系统等温运行 1000 步时所能获得 的数据,因而在进行双体分布函数 g(r)等统计分析时 仍能获得相当平滑的分布曲线,也不会对统计分析的 实际效果造成影响。

3 模拟计算结果分析

3.1 双体分布函数分析

众所周知,由于系统中原子的双体分布函数 g(r) 曲线与 X 射线衍射实验所获得的结构因子 S(q)互为 Fourier 变换,它已成为目前液态、非晶态结构的理论 研究结果与实验结果相互验证的重要手段并被广泛使 用的重要分析方法。当我们考察由模拟所得到的该系 统在 943K 时的双体分布函数 g(r)时,如图 1 所示,它 与 Waseda 所给出的实验结果^[18]甚为相符。这就从一 个重要方面表明,本模拟研究所采用的有效双体势函 数比较成功地反映了该系统在微观结构方面的客观物 理本质。

3.2 键型指数分析

但由于双体分布函数 g(r)只能描述系统中原子的 近邻、远邻原子的数量分布,而不能描述出原子与近 邻所形成的不同键合类型。为了深入了解系统的原子 结构组态,我们就不能满足于双体分布函数 g(r)的统 计分析结果,就必须对每个原子与其近邻的成键关系 有进一步的了解。目前,已经得到广泛采用的键对分 析法、特别是 Honeycutt-Andersen (HA)键型指数法, 可以用来进行比较清晰的描述^[17]。本文的模拟结果, 采用该方法分析时,其结果与我们在文献[11]中所展 示的 10 万个原子系统的结果(是用各种键型的相对百 分比表示的)没有太显著的差别,此处不再重复。

3.3 团簇类型指数分析

然而,由于不同的键型可以构成各种不同的原子 团簇结构,而键型指数法却是难以清晰地描述各种不 同类型原子团簇结构的。为了比较清晰而直观地表示 各种类型的原子团簇结构,必须进一步采用我们在 Qi-Wang 工作^[19]的基础上,已初步建立起来的"原子团 类型指数法" (CTIM)^[12-14]及(CTIM-2)^[20-21]来进行分 析。

CTIM 是采用四个数码来描述每一种基本原子团, 这四个数码表示的含义依次分别为: 与一个中心原子 组成该原子团的近邻原子总数:近邻原子与中心原子 分别构成 1441、1551 和 1661 的键对数。CTIM-2 法 则是在 CTIM 的基础上增加两个数码,依次表示与中 心原子形成 1421 和 1422 键型的数目,从而便于统计 出系统中更多与1421和1422键型相关类型的闭簇, 特别是能清晰地表示出 fcc 基本原子团和 hcp 基本原 子团。根据模拟计算的结果,当我们用 CTIM-2 来进 行描述时,二十面体原子团则用(12012000)表示, 它表明:二十面体原子团是由12个近邻原子与中心原 子组成,这 12 个近邻原子与中心原子只形成 12 个 1551 键型, 而没有形成 1441 和 1661 键型, 如图 2(a) 所示: 同理, hcp 基本原子团则用(1200066)表示 (如图 2 (b)),即 hcp 基本原子团是由 12 个近邻原 子与中心原子组成, 其中 6 个与中心原子构成 1421 键,6个与中心原子构成1422键;而 bcc 基本原子团 则用(1460800)表示(如图2(c)),即 bcc 基本 原子团由14个近邻原子与中心原子组成,其中6个与 中心原子构成 1441 键, 8个与中心原子构成 1661 键。 系统中的这些基本原子团,如图2所示。

Figure 2. Schematics of several basic clusters at 300K: (a) icosahedral basic cluster(12 0 12 0 0 0)with central atom of 946102; (b) hcp basic cluster (14 6 0 8 0 0) with central atom of 82280; (c) bcc basic cluster(14 6 0 8 0 0) with central atom of 546847; (d) tDh basic cluster(12 0 2 0 0 10)with central atom of 946102; (e) basic cluster(14 2 8 4 0 0)with central atom of 130555.; (f) basic cluster(13 1 10 2 0 0)with central atom of 395651.

图 2 系统在 300K 时含有的几种基本原子团结构简图: (a)以 946102 号原子为中心的二十面体基本原子团(12 0 12 0 0 0); (b)以 82280 号 原子为中心的 hcp 基本原子团(12 0 0 0 6 6); (c)以 546847 号原子为中心的 bcc 基本原子团(14 6 0 8 0 0); (d) 以 946102 号原子为中心的截

角十面体(tDh)基本原子团(12020010); (e) 以 130555 号原子为中心的基本原子团(1428400); (f) 以 395651 号原子为中心的基本原子 团(13110200)。

根据 CTIM,我们得到各温度下的原子团类型的 统计结果,如表 1 所示。

由表 1 明显可见, 在快速凝固过程中, 在 CTIM-2 中用(12012000)表示的二十面体基本原子团的数 目从 943K 时的 2106 个急剧增加至 300K 时的 33853 个, 增加了 16 倍, 占总原子团数的 54.79%, 它在这里 对系统微观结构的变化起着非常关键的、决定性的作 用。其次是(13110200), (1424800), (141103 00)等三种基本原子团。

由表1还可见到一个重要的特点:在系统所有基本原子团类型中,当按1441,1551,1661 键型的数目依次排序时,则明显可分为五个区段(第六个区段不够明显),每一个区段有一个极大值,如在300K时,各个区段具有极大值的基本原子团类型依次为(120120),(131102),(14284),(13364)和(14446)。再进一步分析又可见到:系统中1441键型数依次为0,

1,2,3,4(为连续递增整数-每个区段对应一个整数); 1551 键型数依次为12,10,8,6,4(为连续递减偶数-每个区段对应一个整数);1661 键型数依次为0,1, 2,3,4,5,6,7(为连续递增整数-每个区段对应几 个整数)。正是这三种键型以三个不同的数列相互配 合,使得各类型基本原子团在该区段中按照构形几何 学(欧拉定理)、热力学和动力学三方面的不同优势, 而决定其形成能力的强弱,及至其最后出现数量的多 少(其具体机制仍有待于进一步研究)。

由表1还可见到另一个重要的特点:系统中存在 着两种与晶体结构相关的六角密集基本原子团(hcp) (1200066)与截角十面体基本原子团(tDh) (120 20010),但它们的数目都很少,在整个凝固过程中, hcp 时隐时现,tDh 虽有点增加趋势,仍难以对系统 结构产生什么明显的影响。

		Temperature(K) and the number of various cluster-types												
Types of clusters	943	883	833	780	730	675	625	550	500	450	400	350	300	
(1200066)	0	6	2	1	3	2	1	0	1	2	3	0	2	
(12 0 2 0 0 10)	5	5	5	5	4	9	9	9	9	15	15	20	28	
(12 0 12 0 0 0)	2106	2819	3671	4867	6389	8698	1083 3	14857	18328	22216	26207	30153	33853	
(14 0 12 2 0 0)	183	210	253	368	447	564	751	881	1007	1189	1203	1360	1416	
(15 0 12 3 0 0)	78	68	103	126	165	208	262	358	410	391	478	472	550	
(16 0 12 4 0 0)	8	19	17	27	31	40	34	46	55	63	74	83	91	
(13 1 10 2 0 0)	1544	1919	2341	3078	3750	4870	5357	6522	7244	8125	8974	9417	9930	
(14 1 10 3 0 0)	427	536	684	894	1113	1366	1585	1881	2136	2382	2638	2892	3004	
(15 1 10 4 0 0)	172	213	285	366	452	568	647	845	899	1026	1092	1117	1191	
(16 1 10 5 0 0)	29	37	42	67	76	95	104	111	127	136	163	175	186	
(17 1 10 6 0 0)	2	6	2	4	4	3	6	9	5	7	4	5	3	
(10 2 8 0 0 0)	13	7	16	13	15	11	12	3	5	2	2	0	0	
(11 2 8 1 0 0)	231	243	260	269	273	274	250	215	188	173	148	110	107	
(12 2 8 2 0 0)	969	1066	1208	1440	1624	1865	1974	2117	2037	2067	2051	1956	1902	
(13 2 8 3 0 0)	396	452	548	585	740	882	933	960	1051	1029	999	1035	1038	
(14 2 8 4 0 0)	735	865	1014	1291	1632	1992	2194	2635	2758	2985	3286	3363	3628	
(15 2 8 5 0 0)	188	224	288	346	415	573	619	750	810	791	939	1023	1082	

Table 1. Relations of the number of various basic clusters with temperature (K) 表 1 各种基本原子团的数目与温度(K)的关系

The 7th National Conference on Functional Materials and Applications

(16 2 8 6 0 0)	23	26	52	59	56	75	86	94	77	102	110	122	104
(17 2 8 7 0 0)	0	3	2	6	5	5	7	8	4	0	2	3	3
(10 3 6 1 0 0)	3	6	5	2	1	5	4	3	1	1	1	0	0
(11 3 6 2 0 0)	41	36	38	33	29	23	19	19	20	13	5	8	5
(12 3 6 3 0 0)	288	260	301	359	375	345	322	253	276	199	174	140	146
(13 3 6 4 0 0)	914	1016	1191	1412	1651	1810	1951	1936	1884	1857	1782	1689	1726
(14 3 6 5 0 0)	318	400	527	570	669	739	800	845	884	834	853	868	842
(15 3 6 6 0 0)	103	106	149	182	227	224	295	267	358	330	364	371	386
(16 3 6 7 0 0)	11	9	13	12	14	28	25	28	29	30	25	27	32
(11 4 4 3 0 0)	19	16	21	13	21	16	15	11	6	5	2	2	4
(12 4 4 4 0 0)	102	106	83	80	95	88	89	63	47	55	33	33	29
(13 4 4 5 0 0)	131	112	124	151	133	192	149	131	102	107	85	65	71
(14 4 4 6 0 0)	175	225	226	261	266	332	354	336	311	258	268	269	267
(15 4 4 7 0 0)	42	56	59	58	62	76	105	101	88	84	113	83	126
(16 4 4 8 0 0)	5	5	3	6	3	7	10	10	9	6	5	13	8
(12 5 2 5 0 0)	7	9	17	10	11	3	8	5	4	2	1	2	2
(13 5 2 6 0 0)	27	30	33	30	40	30	30	39	15	18	23	17	16
(15 5 2 8 0 0)	1	4	1	7	5	6	5	7	12	2	5	4	5
(14 6 0 8 0 0)	4	2	6	8	3	8	9	9	5	4	1	3	3
Total number of all clusters	9300	11117	13589	1700 6	2079 6	26029	2985 4	36365	41203	46498	52122	56885	61786
Icosahedrons expressed by (12 0 12 0) related to the total numbers of all clusters (%)	22.65	25.36	27.01	28.6 2	30.72	33.42	36.29	40.85	44.48	47.78	50.28	53.01	54.79

Figure 3. The 2D schematic of the whole system consisting of 1,000,000 Al atoms at 300K: (a) Whole (111) cross section; (b) a 1/16 part of (111) cross section.

图 3.1,000,000 个 Al 原子系统在 300K 时的 2D (111) 截面示意图。

3.4 纳米级大团簇结构的形成

为要进一步研究纳米级大团簇结构的形成与演变特征,我们首先从总体上来考察系统的微观结构组态, 图 3 (a), (b)分别展示出系统在 300K 时的(111)的截 面图。明显可见:系统在由液态形成非晶态结构时, 其微观结构,有原子相对密集的区域,也有原子相对 游离的稀疏区域。在其原子相对密集的区域,的确形 成了各种尺寸(大小)不同的纳米级原子团簇结构。 特别在图(b)中还可以清晰地看到五边形图样及其组 合,正是各个大团簇结构中所包含的二十面体基本原 子团的截面图。这正是该非晶态结构主要是由二十面 体结构组成的一个非常确切的证明。

图 4 所示是系统中一个含有 139 个原子、由 26

个基本原子团组成的纳米级大团簇结构。由图(a)粗略 可见,该纳米级大团簇结构应是由几个大小不同的中、 小团簇相互连接而成,但具体细节是很难分辨的;由 图(b)所展示的该大团簇所包含的 26 个基本原子团的 中心原子的分布情况,却可以非常清晰地看到,该大 团簇主要是由二个较大团簇相互连结而成,而不是以 某一个原子为中心按一定规则堆积为多个壳层而成。 然而,这正是在凝固过程中所形成的团簇结构与由气 相沉积、离子溅射等方法所获得的团簇结构的本质差 别所在。为确切表征该大团簇的精细结构,我们可以 进一步标出该团簇所包含的 26 个基本原子团所属的 具体类型和数量,这对于进一步深入理解该团簇的微 观结构特征是非常有意义的。

Figure 4. Schematic diagram of a larger cluster consisting of 139 atoms within 26 basic clusters with connecting bonds at 300K (the gray spheres are the center atoms of basic clusters): (a) the whole atoms; (b) the central atoms.

图 4. 一个含有 139 个原子的纳米级大团簇结构图 (300K 时)(图中灰球为基本原子团的中心原子).该大团簇结构由 26 个基本 原子团相互结合而成。 (a) 展现全部原子; (b)只展现基本原子团的中心原子。

当我们进一步分析图(b)时,还可以明显看到,26 个基本原子团的中心原子都是相互连接即彼此互为紧 邻而成键的,但有的是单键连接,有的是多键连接。 按照一般情况,互为多键连接的基本原子团应该比单 键连接的结合得更为紧密,因而也更为稳定。

我们的研究已经表明:纳米级大团簇结构在基本 原子团数目相同的情况下,其所含的总原子数越少, 则基本原子团中心原子间多键结合的数目越多、因而 越紧密、越稳定;反之,其所含的总原子数越多,则 基本原子团中心原子间的多键结合的数目越少,因而 越松散、越不稳定。然而,在系统中出现最多的大团 簇结构确实是处于中间状态。因此,从基本原子团的 观点来看,系统中出现数目最多的团簇结构类型并非 是最稳定的团簇结构类型,这一点,是与我们的惯用 思路相违背的,但却是我们对团簇结构认识的进一步 深化。

虽然在各个温度下所形成的原子团簇的尺度大小 在微观上是十分随机的,而且纳米级大团簇结构的形 成,主要是通过较大团簇之间、较大团簇与较小团簇 之间的拉锯式(得而复失、失而复得)的相互竞争形

式不断兼并、演变而成。但从有序度等宏观的观点来 看,却是与热力学统计规律相当符合的。

虽然纳米级团簇结构的形状和大小各不相同,但 它们有一个共同的特点:都具有比较突出的角隅。这 些角隅正好是液态金属凝固过程中形成各种支晶的关 键起点。

4 结论

根据上述 CTIM-2 对液态金属 Al 凝固过程中微观 结构演变影响的模拟研究的分析和讨论,可得以下结 论:

1. 对液态金属 A1 凝固微结构的变化起关键作用 的是与 1551 键型密切相关的(12012000),(13110 200),(1428400),(14110300)等四种基本原 子团。

2.凝固过程中形成的纳米级大团簇结构是由大小 不同的中、小团簇相互连接而成。它们是与由气相沉 积、离子溅射等方法所获得的团簇结构不同,这也正 是在凝固过程中所形成的纳米级团簇结构的本质特征 所在。

3. 组合成纳米级大团簇结构的各种基本原子团

的中心原子都是相互连接、即彼此互为紧邻而成键 的,但有的是单键连接,有的是多键连接。呈多键结 合的中心原子的数目越多,则结合越紧密、也越稳定。 系统中出现数目最多的团簇结构类型并非是最稳定的 团簇结构类型。

4. 发现在液态金属 Al 的凝固过程中,系统中存 在着两种与晶体结构相关的六角密集基本原子团(hcp)

(1200066)与截角十面体基本原子团(tDh) (120 20010),但它们的数目都很少,在整个凝固过程中, hcp 时隐时现,tDh 虽有点增加趋势,仍难以对系统 结构产生什么明显的影响。

5 致谢

衷心感谢国家自然科学基金(50831003; 50571037) 对本研究工作的支持!

References (参考文献)

- A Nasehzadeh , N Etminan. Phase Change of Lennard-Jones Nano Clusters Containing Non Magic Numbers [J]. J. Iranian Chemical. Society. 2010, 7: S28-33
- [2] B K Min, W T Wallace, D W Goodman. Support effects on the nucleation, growth, and morphology of gold nano-clusters [J].

Surface Science, 2006, 600(2):L7-11.

- [3] P Magudapathy, P Gangopadhyay, B K Panigrahi, Nair KGM, Dhara, S. Electrical transport studies of Ag nanoclusters embedded in glass matrix. *Physica B*, 2001; 299(1-2):142-146.
- [4] N Spiridis, J Haber, J Korecki. STM studies of Au nano-clusters on TiO2 (110) [J]. Vacuum, 2001, 63: 99-105.
- [5] Xianghong Liu, Xiaoguang Zhang, Yue Li, Xiuyan Wang, Nanquan Lou. Cluster formation by direct laser vaporization: evidence for the twofold mechanism [J]. *Chemical Physics Letter*, 1998, 288(5-6): 804-808.
- [6] R L Zimmerman, D Ila, E K Williams, D B Poker, D K Hensley, C Klatt, S Kalbitzer. Ion beam synthesis of Au and Cu nanoclusters in MgO[J]. *Nuclear Inst. Met. Phys. Res. B*, 1999, 148:1064-1068
- Yamamoto H, Asaoka H. Formation of binary clusters by molecular ion irradiation [J]. *Applied Surface Science*, 2001, 169: 305-309
- [8] H Gleiter. Nanostructured materials: Basic concepts and microstructure [J]. Acta Material, 2000, 48(1): 1-29.
- [9] A Inoue. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. *Acta Material*, 2000, 48(1): 279-306.
- [10] Rangsu Liu, D W Qi, S Wang. Subpeaks of structure factors for rapidly quenched metals. *Physical Review B*, 1992, 45(1): 451-453.
- [11] Rangsu Liu, Jiyong Li, Kejun Dong, Caixing Zheng, Hairong Liu. Formation and evolution properties of clusters in a large liquid metal system during rapid cooling processes[J]. *Material Science Engineering B*, 2002, 94:141-148.
- [12] Kejun Dong, Rang su Liu, Aibing Yu, Riping Zou, Jiyong Li J. Simulation study of the evolution mechanisms of clusters in a large-scale liquid Al system during rapid cooling processes[J]. *Journal of Physics: Condense. Matter*, 2003, 15: 743-753.
- [13] Rang-su Liu, Hai-rong Liu, Ke-jun Dong, Zhaoyang Hou, Ze'an Tian, Ping Peng, Aibing Yu. Simulation study of size distributions and magic number sequences of clusters during the solidification process in liquid metal Na [J]. *Journal of Non-Crystal Solids*, 2009, 355: 541-547.
- [14] Rangsu Liu, Kejun Dong, Zean Tian, Hai-rong Liu, Ping Peng, Aibing Yu. Formation and magic number characteristics of clusters formed during solidification processes [J]. *Journal of Physics.: Condense. Matter*, 2007, 19: 196103-196117.
- [15] D H Li, X R Li, S Wang. Variational calculation of Helmholtz free energies with applications to the sp-type liquid metals [J]. *Journal of Physics F: Metal Physics*, 1986, 16: 309-321.
- [16] S Wang, S K Lai. Structure and electrical resistivities of liquid binary alloys[J]. *Journal of Physics F: Metal Physics*, 1980, 10: 2717-2737.
- [17] J.Dana Honeycutt, Hans C.Andersen. Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters [J]. Journal of Physics Chemistry., 1987, 91: 4950-4963.
- [18] Y Waseda. The structure of Non-crystalline Materials[J]. New York: McGraw-Hill, 1980, 270.
- [19] D W Qi, S Wang. Icosahedral order and defects in metallic liquids and glasses[J]. *Physical Review B*, 1991, 44: 884-887.

- [20] Ze'an Tian, Rangsu Liu, Ping Peng, Zhaoyang Hou, Haiyong Liu, Cai-Xing Zheng, Kejun Dong, Aibing Yu. Freezing structures of free silver nanodroplets: A molecular dynamics simulation stude[J]. *Physics Letter A*, 2009, 373(18-19): 1667-1671.
- [21] Hairong Liu, Rangsu Liu, Ailong Zhang, Zhaoyang Hou, Xin Wang, Zean Tian. A simulation study of microstructure evolution during solidification process of liquid metal Ni [J]. *Chinese Physics*, 2007, 16(12): 3747-3753.