

Catalytic Properties of a Lanthanum Hexaaluminates Metal Oxides for DeNOx System

Xiaoguang Ren¹, Chao Ren², Xiaoyan Li¹

¹Dept. of Chemical Engineering ,Beijing Institude of Petrochemical Technology,Beijing,China ,102617 ²Dept. of chemical engineering Beijing University of Chemical Technology , Beijing,China100029 renxiaoguang@bipt.edu.cn, renchao@bipt.edu.cn

Abstract: With the development of modern industry and the increasing number of cars, humans NOx emissions to the atmosphere more and more. NOx pollution has become an increasingly serious global problem.

In this study, CO the as the reducing agent in the Selective Catalytic Reduction (SCR) NOx technology were used. The hexaaluminate metal oxides catalysts has been prepared by coprecipitation method with different ions on hexaaluminate SrMnAl11O19- δ . The hexaaluminate catalysts were characterized By powder X-ray diffraction (XRD), surface area and pore structure determination (BET), hydrogen temperature programmed reduction (H₂-TPR) and other methods. The reduction catalyst properties of hexaaluminate for deNOx weve evaluated by using devices of micro-evaluation. The roasting temperature and time of for the SrMnAl₁₁O_{19- δ} calcined catalyst has been studied. The results showed that the CO can remove NOx very well . The hexaaluminate not only have a good Catalytic performance, but also can form a complete crystal under roasting temperature for 1200 °C and roasting time for 4h.

Keywords: DeNO_x; Hexaaluminate catalysts; CO Reduction; Catalytic Activity

六铝酸盐型金属氧化物催化剂脱硝性能

任晓光¹,任 超²,李晓燕¹

¹北京石油化工学院,北京,中国 102617 ²北京化工大学,北京,中国,100029 renxiaoguang@bipt.edu.cn, renchao@bipt.edu.cn

摘 要:本文使用 C0 作为还原剂,制备了六铝酸盐型金属氧化物催化剂,并考查该催化剂在不同焙烧温度和焙烧时间的脱硝性能,同时对所制备的催化剂进行研究与表征。研究表明: 六铝酸盐型金属 氧化物催化剂在脱硝过程中呈现了良好的性能,一次脱硝率在 95%以上。

关键词: 脱硝; 六铝酸盐催化剂; C0 还原; 催化活性

1 引言

20 世纪 90 年代以来,随着经济持续快速发展和 能源消费增加,中国 NOx 排放量不断增加, FCC (流 化催化裂化)是炼厂生产汽油的主要方法之一, FCC 过程中 NOx 的排放量约占空气中 NOx 排放总量的 10%。由于 NOx 能形成酸雨和光化学烟雾,破坏臭 氧层,严重损害人体健康,因此世界各国关于控制 FCC 过程中 NOx 排放的法规也越来越严格^[1-3]。

六铝酸盐用于催化燃烧有良好的性能,已有学者 将其用于分解N₂O的性能和甲烷催化燃烧方面做了初

项目资助:国家自然科学基金项目(批准号:21076025)

步研究和探索^[4-7],取得了一定的进展,本研究将用 CO 作为还原剂,利用六铝酸盐型金属氧化物催化剂 对氦氧化物的选择性催化还原进行研究与表征。研究 表明:六铝酸盐型金属氧化物催化剂在脱硝过程中呈 现了良好的催化还原性能,一次脱硝率达到 95 以上%。

2 实验装置及方法

采用共沉淀法制备了六铝酸盐催化剂。实验考察 了不同焙烧温度,不同焙烧时间等一系列条件下所得 六铝酸盐的活性及一系列表征。

实验流程参见图 1。本实验采用微型催化剂评价

装置评价本实验合成的六铝酸盐催化剂的脱硝性能, 并用 CO 作为还原剂,还原混合气体中的 NO,考察 其催化活性。反应器采用内径 10mm 的石英管,自动 控温仪控制程序升温反应,0~200℃的升温速度为 10 ℃/min,200~800℃的升温速度为 4℃/min。催化剂颗 粒度为 20 目~40 目之间的样品,称取 0.5g 的样品。 气体总流量 100ml/min。其中 CO: NO=2:1,其余为 平衡气体 N₂。反应尾气用氮氧分析仪在线检测和质谱 仪在线检测。

Fig. 2-1 Schematic diagram of selective catalytic combustion
图 2-1 选择性催化燃烧装置示意图
1,2,3: 气瓶 4,5,6: 控制阀 7: 微型反应器 8: 加热炉
9: 三通 10: NO_x分析仪 11: 温控仪 12: 质谱 13: 计

3 **实验结果与讨论** 3.1 焙烧温度对催化剂的影响

图 3-1 是 以 碳 酸 铵 为 沉 淀 剂 制 备 样 品 SrMnAl₁₁O₁₉₋₈经不同温度(1000℃、1100℃、1200℃、 1300℃)下焙烧所得催化剂的 XRD 谱图。

图 3-1 不同焙烧温度下形成 SrMnAl₁₁O_{19-δ}的 XRD 图 Fig. 3-1 XRD patterns of SrMnAl11O19-δ at various cacination temperature

由图可见,前驱物在1000℃焙烧温度下,衍射图 呈弥散状态,说明各组分之间没有晶化,所以 XRD 检 测不到六铝酸盐相;1100℃焙烧后开始形成六铝酸盐 相,且晶相峰宽化,随着焙烧温度的升高,驱动前驱 体的固相反应,逐渐在20为8°、20°、31.8°、33.4°、 35.7°、47.8°、57.8°和66.5°等处出现 SrMnAl₁₁O_{19-δ}特 征峰,在21.4°、46.3°和76.2°等处出现 SrAlO₃的特征 峰。焙烧温度达到1200℃基本上可以形成尖锐完整的 六铝酸盐型复合氧化物晶相,只有少量的钙钛矿结构 的氧化物。随着焙烧温度的进一步升高,从图 3-1 中 可以看出,六铝酸盐衍射峰有所减弱,从而说明采用 适当的焙烧温度,可以促进反应原料之间相互渗透、 反应、成核、结晶,有助于晶体有较高的结晶程度。 但是焙烧温度过高,结晶强度和衍射峰强度又有所减弱,说明温度太高容易造成孔结构的塌陷。

催化剂的活性主要取决于催化剂中替代离子的氧化形态,活性组分的可还原性与催化氧化的活性直接有关。实验利用氢气程序升温还原(H₂-TPR)来考察六 铝酸盐结构中Mn离子搀杂时的可还原性。催化剂SrMnAl₁₁O₁₉₋₈的TPR表征测试结果如图3-2所示。

Fig. 3-2 TPR of SrMnAl_{11}O_{19\text{-}\delta} catalyst at different temperatures

图 3-2 催化剂SrMnAl₁₁O₁₉₋₆在不同温度下的TPR图

当焙烧温度为1000℃时,在500℃左右出现了一个 较大的还原峰;当焙烧温度为1100℃时,在400℃左右 出现了一个还原峰;当焙烧温度为1200℃和1300℃时, 在500℃和700℃左右各出现了一个还原峰。还原峰面 积随温度的升高而减小。

图 3-3 是前驱体经过不同温度焙烧所得催化剂的 活性比较,可以看出:在1000℃焙烧形成六铝酸盐晶 相后,催化活性有所降低,继续提高焙烧温度,对其 起燃温度稍有影响,但在高温稳定性上体现出更好的 效果,证明该六铝酸盐具有良好的高温稳定性。

图 3-3 不同焙烧温度下制备SrMnAl11O19-8的催化活性

因此,通过 XRD 以及活性结果的鉴定,我们 可以认为制备六铝酸盐催化剂的最佳温度在 1200℃。这与 Yashnik^[41,42]等对制备六铝酸盐在不 同温度下焙烧进行大量的研究相吻合。

3.2 焙烧时间对催化剂的影响

图 3-4 为催化剂在 1200℃高温下焙烧不同时间所 得 SrMnAl₁₁O_{19-δ} 催化剂的 X 射线衍射图,可以看出经 1200℃焙烧后,催化剂均出现了六铝酸盐的特征衍射 峰,但是从峰的强度比较,经过 4h 和 5h 焙烧样品的 强度较大,随着时间的增加,逐渐减小。

Fig. 3-4 XRD patterns of SrMnAl₁₁O_{19-δ} calcined at various time 图 3-4 不同焙烧时间下形成 SrMnAl₁₁O_{19-δ} 的 XRD 图

图3-5为不同焙烧时间下形成的SrMnAl11O19-6催

化剂TPR表征结果。由图可知,当焙烧时间为2h时, 在500℃、700℃左右出现了两个较大的还原峰。当焙 烧时间为3h、4h、5h时,在500℃、700℃左右出现了 两个还原峰。随着焙烧时间的增加,还原峰的面积逐 渐减小。

与此同时从图3-6活性鉴定也可以看出, 焙烧4h 所制得的催化剂活性最高, 而焙烧2h所制得的催化剂 活性最低, 这一特点在反应温度为600℃~700℃最为 明显, 说明反应温度在此范围内时, 焙烧时间对催化 剂活性影响最为明显。

Fig. 3-6 Catalytic activity of SrMnAl₁₁O₁₉₋₆ calcined at various time

图 3-6 不同焙烧时间下SrMnAl11O19-8 催化活性

因此根据以上研究结果,本论文后面制备的所有 催化剂焙烧温度和焙烧时间都分别在1200℃和4h。

4 结论

(1). 六铝酸盐催化剂经高温1200℃焙烧4个小

Fig. 3-3 Catalytic activity of SrMnAl_{11}O_{19\text{-}\delta} at different temperature

时之后可以形成完整的六铝酸盐晶相,时间过长或者 温度过高则容易出现团聚现象。

(2).不同焙烧温度对催化剂活性有一定影响, 其中1200℃焙烧形成六铝酸盐催化活性最佳。而其他 三个样品分别以1000℃、1300℃、1100℃焙烧样品, 其催化活性依次递减。

References (参考文献)

- Zhengjiandong, Renxiaoguang, Songyongji, Influences of precipitation temperature on LaMnAl11019 catalysts prepared by co- precipitation Journal of fuel chemistry and technology 2007,35 (1):117-120
- [2] Zarur A. J, Wu H, Ying J. Y. Reverse microemulsion-mediated synthesis and structural evolution of Barium hexaaluminate nanoparticles [J]. Langmuir, 2000, 16: 3042~3049
- [3] AretiKotsiaf, HalkidesThomsl, Dimitris, etal. Activity

enhancement of bimetallicRh-Ag/A12O3 catalysts for selective catalytic reduction of NO by C3H6[J].Catalytic Letter, 2002, $79:113 \sim 117$.

- [4] Jiandong zheng, Xiao guang Ren, Yongji Song. Catalytic properties of a (A=Ba, Ca, Sr, and Y) modified Lanthanum hexaaluminates for catalytic combustion of methane.Reaction kinetics and catalysis letters. 2008, 93 (1):3-9
- [5] Jiandong zheng, Xiaoguang Ren, Yongji Song. Effect of the amount of water in the precursor solution on the catalytic property of LaMnAl₁₁O_{19-s}high temperature combustion catalyst. Reaction kinetics and catalysis letters. 2007, 92(1):11-17
- [6] Xiaoguang Ren, Jiandong Zheng, Yongji Song. Catalytic properties of Fe and Mn modified lanthanum hexaaluminates for catalytic combustion of methane. Catalysis communications . 2008, 9(5):807-810
- [7] Yongji Song, Anming Zhu, Xiaoguangh Ren, Preparation of Ce and Mn substituted hexaluminate catalysts for natural gas combustion by revers emicroemulsionJournal of Functional materials 2008,39(1):75-78