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Abstract: The durations of events in real world are difficult to measure precisely. The starting points and 
ending points of events are fuzzy. It makes it difficult to describe the fuzzy time intervals of events in Allen’s 
interval algebra. To deal with this problem, makes use of Heisenberg’s uncertainty principle to compress 
Meiri’s five pairs of relations between points and intervals into three ones, the thirteen relations of interval 
algebra into six ones to get a kind of fuzzy interval algebra. It simplifies the composition operations between 
intervals and intervals, points and intervals, intervals and points, points and points. It decreases the complex-
ity of temporal reasoning, improves the efficiency of computations. We provide the theoretical research and 
experiments. The result of the experiments shows that the efficiency of the fuzzy interval algebra is better 
than the efficiency of Allen’s interval algebra. 
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1. Introduction 

Allen proposed the interval algebra[1] in 1983. The theory 

has gotten applications in natural language understanding, 

agents, plan recognition, combat cooperation and so 

on[2-5]. Interval algebra defined thirteen basic temporal 

relations. It can be represented by I= {b,bi,m,mi,o,oi, 

s,si,d,di,f,fi,eq }. 

Vilain, and Kautz proposed the point algebra[6] in 1986. 

There are three cases for any two time points P1 and P2: 

P1<P2; P1=P2; P1>P2. It can be represented by 

PP={<,=,>}. 

There are five pairs of relations between points and 

intervals[7]: They are before(b), starts(s), during(d), fin-

ishes(f), after(a). Similarly, there are five pairs of rela-

tions between intervals and points: before by(bi), starts 

by(si), during by(di), finishes by(fi), after by(ai). Use P 

to represent time point, I to represent time intervals. The 

uncertainty relations between points and intervals can be 

represented by P{b, s, d, f, a}I. The uncertainty relations 

between intervals and points can be represented by I{bi, 

si, di, fi, ai}P. There are 25-1=31 (The empty set has no 

meaning) temporal relations between points and intervals. 

There are also 25-1=31 temporal relations between inter-

vals and points. 

2. Fuzzy Interval Algebra 

First, according to Heisenberg’s uncertainty principle we 

know that the endpoints of time intervals of events in real 

world can not be given precisely. Secondly, given two 

real numbers a and b randomly. Suppose they are the 

left end points of two intervals. Then the possibility of 

a=b is 1/K[R]=0, where K[R] is the cardinality of the 

real set. 

For the two reasons above we say that the seven basic 

temporal relations {m, mi, s, si, f, fi, eq} are trivial, they 

can not happen in real word, and write Trivial={ m, mi, s, 

si, f, fi, eq}. We delete Trivial={ m, mi, s, si, f, fi, 

eq}from Allen’s thirteen basic temporal relations to get a 

fuzzy interval algebra FI={b, bi, d, di, o, oi}. The ex-

pressing ability of FI is nearly as strong as Allen’s inter-

val algebra, but FI is much simpler than I. 

We can convert the trivial temporal relations to rela-

tions in FI. For example, Suppose that [a1, b1] is the 

time interval of one event measured by someone, and 

[a2, b2] is the interval of another event measured by 

the same person. If [a1, b1] s [a2, b2], or , a1=a2, 

b1<b2. Then according to Heisenberg’s uncertainty 

principle, it means that a1 and a2 are very close. We 

can express it in mathematics as follows: There exists a 

positive number  which is small enough such that a1

－≤a2≤a1＋. We get [a1, b1]o[a2, b2] or [a1, b1]d 

[a2, b2]. Hence, in this fuzzy temporal reasoning sys-

tem, we convert s to {o, d }. It can be represented by s

→{o,d }. Similarly, we have m→{b,o}; mi→{bi,oi}; si

→{oi,di}; f→{d,oi}; fi→{di,o}; eq→{o,oi,d,di}. We 

denote this fuzzy interval algebra with FIA, and write 

FI={b, bi, d, di, o, oi }. 
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For the same principle, we can delete the trivial rela-

tions {s, f} from the five basic temporal relations {b, s, d, 

f, a} between points and intervals, and get the fuzzy sys-

tem {b, d, a}. We can delete the trivial relations {si, fi} 

from the five basic temporal relations {bi, si, di, fi, ai} 

between intervals and points, and get the fuzzy system 

{bi, di, ai}. These trivial relations can be converted as 

follows: s→{b,d};si→{bi,di};f→{d,a};fi→{di,ai}. Fi-

nally, we get the fuzzy system between points and points 

{<, >}. 

3. Combined Fuz zy Qualita tive Te mporal 
Reasoning System on Points or Intervals 

As above, we can simplify Allen’s 213-1=8191 temporal 

relations to fuzzy II’s (Interval-Interval) 26-1=63 tempo-

ral relations. Simplify PI (Point-Interval) to 23-1=7 tem-

poral relations, IP(Interval-Point) to 23-1=7 temporal 

relations, PP(Point-Point) to 22-1=3 temporal relations. 

Now there are four kinds of constraints: II, PI, IP, 

and PP. Suppose that R’ and R’’ are two constraints. We 

define the compositional operation as follows[7]: 

R’ R’’={r’ r’’| r’∈R’,  r’’ ∈R’’},  r’,  r’’ 

are basic temporal relations. 

 

  For example, {b}  {d, di}={b, o, d}; 

{<} {d}={b, d}. 
The compositional operation of basic temporal rela-

tions be given at its operation table. There are six opera-

tion tables: T1, T2, T3, T4, TPA, TIA. The composi-

tional operation of different kinds of constraints can be 

found at different operation tables[7] as in Table1. 

 

Table 1. Combined operation table of points and intervals 

 PP PI IP II 

PP [TPA] [T1] [ ]  [ ] 

PI [ ]  [ ] [T2] [T4] 

IP [T1]  
t

[T3] [ ]  [ ] 

II [ ]  [ ] [T4]  
t

[TIA] 

 

The  means no meaning, or, the compositional 

operation can not be found here. We will give the six 

operation tables later.[TPA]: P1P2 P2P3 = P1P3. The 

operation table is as follows: 





Table 2. Operation table of PP and PP 

TPA < > 

< < ? 

> ? > 

 

The ? means uncertain completely, or, {<, >}. 

[TIA]：I1I2   I2I3=I1I3. The operation table is 

as follows: 

 

Table 3. Operation table of II and II 

TIA b bi d di o oi

b b ? b,o,d b b b,o,d 

bi ? bi bi,oi,d bi bi,oi,d bi 

d b bi d ? b,o,d bi,oi,d

di b,o,di bi,oi 

di 

o,oi, 

d,di 

di di, o di,oi 

o b bi,oi, 

di 

o,d b,o, 

di 

b,o o,oi, 

d.di 

oi b,o, 

di, 

bi oi,d bi,oi, 

di 

o,oi, 

d,di 

bi,oi 

 

The ? means uncertain completely, or, {b,bi,d,di, 

o,oi }. 

[T1]：P1P2 P2I=P1I ；[T1]
t
：IP1 P1P2=IP2, 

[T1]
t
 means the transpose of [T1]. The operation table 

of [T1] is as follows: 



 

Table 4. Operation table of PP and PI 

T1 b d a 

< b b,d ? 

> ? d,a a 

 

The ? means uncertain completely, or, { b,d,a } 

[T2]：P1I  IP2=P1P2. The operation table is as 

follows: 

 

Table 5. Operation table of PI and IP 

T2 ai di bi 

b < < ? 

d < ? > 

a ? > > 

 

The ? means uncertain completely, or, {<, > }. 
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[T3]：I1P  PI2=I1I2. The operation table is as 

follows: 



 

Table 6. Operation table of IP and PI 

T3 b d a 

ai b b,o,d ? 

di b,o,di o,oi,d,di bi,oi,di 

bi ? bi,oi,d bi 

 

The ? means uncertain completely, or, 

{ b,bi,d,di,o,oi }. 

[T4] ： P1I1 I1I2=P1I2 ， [T4] ： I1I2 

I2P1=I1P1. [T4]
t
 means the transpose of [T4]. The 

operation table of [T4] is as follows: 

 t



 

Table 7. Operation table of PI and II 

T4 b bi d di o oi 

b b ? b,d b b b,d 

d b a d ? b,d d,a 

a ? a d,a a d,a a 

 

The ? means uncertain completely, or, { b,d,a } 

4. Quantitative constraints on points 

For the quantitative constraints[7] on points we have: 

Unary quantitative constraints on points: To con-

straint a point Pi to given intervals {I1 , I2 , …, Ik} may 

be expressed: 

     （Pi  I1）（Pi  I2） ------- （Pi 

 Ik）, or, Pi  {I1 ,I2 ,…Ik}. 

 
 

Binary quantitative constraints on points: To con-

straint the distance of two points Pi and Pj may be ex-

pressed: 

      （Pj-Pi  I1）（Pj-Pi  I2） -------

（Pj-Pi  Ik）, or, Pj-Pi  {I1 ,I2 ,…Ik}. 


 

The initial time point is called P0. It is the minimal 

time point. 

Example: Helen left home between 7:05 or 7:10. 

Given P0=7:00. Unary constraint: If denote the time 

Helen left home as P1. Then P1{(5,10)}. Binary con-

straint: P1-P0{(5,10)}. 

Scenario: It needs Helen thirty minutes or more 

from home to the office on foot. It only spends her ten 

minutes or less if by car. 

Suppose that the time when Helen get to office is P2. 

The binary constraint is: P2-P1{(0,10),(30,+ )}. 

Define operations on the quantitative constraints as 

follows: C’, C’’ are quantitative constraints, the interval 

sets that they belong to are I’, I’’ respectively. The op-

erations on the interval sets may be defined as follows[7]: 

Intersection: C’∩ C’’={x | xI’, xI’’} 

Composition: C’ C’’=’’={z | xI’,yI’’,x+y=z} 

For example, If C1={(1,4),(6,8)} and C2={(3,5),(6,7)}. 

Then C1∩C2={(3,4),(6,7)}. Another example: If C3= 

{(1,2),(6,8)} and C4={(0,3),(12,15)}. Then C3 C4= 

{(1,5),(6,11),(13,17),(18,23)}. 

5. The relatio ns bet ween qualitativ e con-
straints and quantitative constraints 

Consider a pair of points Pi and Pj. If a quantitative con-

straints, C, between Pi and Pj is given (by an interval set 

{I1,…,Ik}), then the implied qualitative constraint, 

QUAL(C), is defined as follows[7]: 

If there exists a value v>0 such that v{I1 ,I2 ,…Ik}, 

then “<”QUAL(C); 

If there exists a value v<0 such that v{I1 ,I2 ,…Ik}, 

then “>”QUAL(C); 

Similarly, if a qualitative constraint, C, between Pi and 

Pj is given (by a relation set R), then the implied quanti-

tative constraint, QUAN(C), is defined as follows[7]. 

If “<”R, then （0,+）QUAN(C)； 

If “>”R, then  (- ,0) QUAN(C). 
They can be expressed in table 8. 

 

Table 8. Relational table of qualitative and quantitative 

QUAL(C) QUAN(C) 

< (0,+ ) 

> (- ,0) 

? (- ,+ ) 

 

The intersection and composition operations can be 

extended to cases where the operands are constraints of 

different types[7]. If C’ is a quantitative constraint and C’’ 

is qualitative, then intersection is defined as quantitative 

intersection: 

C’∩C’’=C’∩QUAN(C’’). 
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Composition, on the other hand, depends on the type 

of C’’. 

If C’’ is a PP relation, then composition (and conse-

quently the resulting constraint ) is quantitative: 

         C’ C’’=C’ QUAN(C’’); 

If C’’ is a PI relation, then composition is qualitative: 

       C’ C’’=QUAL(C’) C’’. 

Illustration Let C1={(0,3}} be a quantitative constraint, 

C2={<} be a PP relation, and C3={b, d} be a PI relation. 

Then, C1 C2={(0,3)}  {(0,+ )} ={(0,+    )}. 

According to table 4, we have C1   

C3={<} {b,d}=({<} {b})({<} d})={b}{b,d}

={b,d}. 

 {

6. Applications of fuzzy interval algebra 

Consider a fuzzy temporal reasoning problem. We are 

given the following information. 

Example Bill and John work for the same company. It 

takes Bill less than twenty minutes to get to work by taxi, 

or at least sixty minutes on foot. While John needs 15-20 

minutes to get to work. Today, Bill left home between 

7:05-7:10 a.m., and John arrived at work between 

7:50-7:55 a.m. We also know that Bill and John met at a 

traffic light on their way to work.           Now we 

have two questions: Is the information in this story con-

sistent? Who was the first to arrive at work? 

Solution: Let B=(P1, P2) denote the event: Bill get to 

work from his home, where P1 is the time when Bill 

leave his home and P2 is the time when Bill get to work. 

Similarly, let J=(p3, p4) denote the event: John get to 

work from his home, where P3 is the time when John 

leave his home and P4 is the time when John get to work. 

Let P0 is the time at 7:00 a.m. that day. 

We know that Bill and John met at a traffic light on 

their way to work. So B overlaps J, or, B{o,d,oi,di}J. It is 

easy to see that P1{b}B, P3{b}J, P2{a}B, P4{a}J. 

There are quantitative constraints between P1 and P2, 

P3 and P4: P1{(0,20),(60,+ )}P2, P3{(15,20)}P4. 

Consider these constraints on points and intervals all 

together and then have the path-consistency calculation. 

Finally we get the table as follows: 

Table 9. Combined operation table 

P0 P1 P2 P3 P4 B J 

P0  (5,10) (65,+ ) (30,40) (50,55) b b 

P1 (-10,-5)  (60,+ ) (20,35) (40,50) b b 

P2
(- , 

-65) 

(- ,

60) 
 

(-，

-25) 

(- ，

-10) 


a a 

P3
(-40, 

-30) 

(-35, 

-20) 

(25, 

+ ) 
 (15,20) d b 

P4
(-55, 

-50) 

(-50, 

-40) 

(10, 

+ ) 

(-20, 

-15) 
 d a 

B bi bi ai di di di 

J bi bi ai bi ai d

 

The temporal relations in each cell of table 9 are basic, 

and no contradiction. So the information in this story is 

consistent. Because P2{(- ,-10)}P4, So P4<P2, or, 

John arrived at work first. 



Experiments 

The configurations of the experiments are: Windows 

XP, 512M main memory, Intel’s Celeron 2.0G CPU, Use 

Visual C++ to program. The constraints of interval alge-

bra network are generated by Beek’s function s(n,p)[8], 

where n is the number of intervals, p is a positive number 

that is less than 1. 

Step 1. Generate the underlying constraints graph by 

indicating which of the possible n(n-1)/2 edges is present. 

Let each edge be present with the probability p, inde-

pendently of the presence or absence of other edges. 

Step 2. If an edge occurs in the underlying constraint 

graph, randomly chose a nonempty subset of I for the 

edge. If an edge does not occur, label the edge with I, the 

set of all thirteen basic relations. 

Step 3. Generate a “solution” of size n as follows. 

Generate n real intervals by randomly generating values 

for the end points of the intervals. Determine the consis-

tent scenario by determining the basic relations which are 

satisfied by the intervals. Finally, add the solution to the 

IA network generated in Steps 1-2. 

From this IA network, we can get a fuzzy IA network: 

Convert the trivial temporal relations to relations in FI as 

in section 2. So, for the same problem, we label the edges 

in different ways, and get an IA network and a fuzzy IA 

network respectively. The differences exist only in the 
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labels of edges. After the experiments of path consis-

tency on IA and fuzzy IA, we get the data as follows. 

 

Table 10. Experiments of path consistency on IA and FIA 

 20 30 50 

IA 0.010 0.030 0.136 

FIA 0.005 0.010 0.033 

 

Notice: The cell “0.136” means that the time required 

for the path consistency of the IA network with fifty in-

tervals is 0.136 seconds. 

It is easy to see that the time required in FIA is much 

less than in IA. 

7. Summary 

Simplify the Allen’s interval algebra IA to get a fuzzy 

interval algebra FIA, and show that the expressing ability 

of FIA is nearly as strong as IA. Define the combined 

qualitative and quantitative temporal operation table. 

Have the fuzzy temporal reasoning on points and points, 

points and intervals, intervals and points, intervals and 

intervals. The experiments show that the efficiency of 

FIA is much better than IA. 

References 
[1] Allen, J. Maintaining knowledge about temporal intervals. 

Comm. ACM, 26: 832-843, 1983. 
[2] Xia, Z. Fang, H. Analyzing and computing dependent relations 

of the combat action series[C]. Conference on Sensors, and com-
mand, control, communications, and intelligence (C3I) technolo-
gies for homeland security and homeland defense III, proceed-
ings of SPIE 2004: 720-726. 

[3] Xia, Z. Fang, H. IA and PA network-based computation of coor-
dinating combat behaviors in the military MAS[C]. Conference 
on Sensors, and command, control, communications, and intelli-
gence (C3I) technologies for homeland security and homeland 
defense III , proceedings of SPIE 2004: 727-733. 

[4] Shen, J. Xu, D. Liu, T. Improving the algorithm of temporal 
relation propagation[C]. Conference on Multisensor, Multisource 
Information Fusion: Architectures, Algorithms, and Applications; 
proceedings of SPIE 2005: 353-359. 

[5] Xia, Z., Wu, J., Fang, H. Computation of coordinating combat 
behaviors in the military MAS [J], Electronic engineering on 
ships, 2004, 24(1), 20-24. 

[6] Vilain, M. Kautz, H. Constraint Propagation Algorithms for 
Temporal Reasoning[C]. Proc. AAAI-86, 377-382. 

[7] Meiri, I. Combining Qualitative and Quantitative Constraints in 
Temporal Reasoning[J].Artificial Intelligence, 1996, 87(11); 
343-385. 

[8] Beek, P. Manchak, D. The Design and Experimental Analysis of 
Algorithms for Temporal Reasoning[J]. Journal of Artificial In-
telligence Research, 1996, 4: 1-18. 

 

272

Proceedings of 14th Youth Conference on Communication

978-1-935068-01-3 © 2009 SciRes.

http://202.120.13.124/wfrs_mirror/Search/ResourceDataDetailPage.aspx?recordSchema=native.html&Database=qkyw&expression=31905771
http://202.120.13.124/wfrs_mirror/Search/ResourceDataDetailPage.aspx?recordSchema=native.html&Database=qkyw&expression=31905771
http://202.120.13.124/wfrs_mirror/Search/ResourceDataDetailPage.aspx?recordSchema=native.html&Database=qkyw&expression=31905771
http://202.120.13.124/wfrs_mirror/Search/ResourceDataDetailPage.aspx?recordSchema=native.html&Database=qkyw&expression=31905771
http://202.120.13.124/wfrs_mirror/Search/ResourceDataDetailPage.aspx?recordSchema=native.html&Database=qkyw&expression=31905771



