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Abstract:In this paper a new approach of local utility maximization to hedging in incomplete markets is pro-
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1. Introduction 

It is well known that in an incomplete market there are 

several equivalent martingale measures and that perfect 

hedging is not always possible. In this situation, if you 

want to be as safe as you should invest in a superhedging 

strategy (cf. e.g. El Karoui and Quenez (1995)[6], Karat-

zas and Shreve (1998)[15]). However, even for simple 

European call options only trivial superhedging strate-

gies exist in a number of reasonable market models (cf. 

Eberlein and Jacod (1997)[5], Frey and Sin (1999)[11]). 

This is unsatisfactory. 

Alternatively, you may minimize some form of quad-

ratic risk (cf. Föllmer llmer and Sondermann (1986)[16], 

Duffie and Richardson (1991)[4],Schweizer (1994, 

2001)[19],[20] for an overview). This can be interpreted as a 

special case of the following third approach if we allow 

for quadratic utility functions. 

In this paper we follow a third popular suggestion, 

namely, to maximize some expected utility among all 

portfolios that differ only in the underlying asset and 

have a fixed position in the contingent claim. Variations 

of this approach have been investigated by Duffie 

(1992)[3], Karatzas and Shreve (1998)[15],Cvitanic,Pham 

and Touzi (1999)[1], Kallsen (1999)[13], Föllmer and Leu-

kert (2000)[7], Delbaen et al (2002). In particular, Kallsen 

(1999, 2002)[13], [14] proposes a solution to the hedging 

problem, in stead of maximization of the expected utility 

of terminal wealth as is usually done (Duffie (1992)[3], 

Karatzas and Shreve (1998)[15]), which is based on 

maximization of the expected utility of the gains over 

infinitesimal time intervals. The approach has several 

advantages. Firstly, it is much easier to determine opti-

mal strategies than in the classical utility maximization 

frame work. Secondly, optimal strategies will usually be 

more robust against long term model misspecification 

since they depend only on the local behaviour of the se-

curities price process. Thirdly, there is no dependence on 

a terminal date T. 

Inspired by the local idea of above-mentioned, we 

provide an alternative approach of local utility maximi-

zation to hedging in incomplete markets. Different from 

the local utility maximization in Kallsen (1999, 2002) 
[13],[14], our approach is  based on maximization of the 

expected utility of the discounted financial wealth proc-

ess by pointwise. We think that the approach introduced 

in this paper is natural and reasonable, as a investor, you 

would like to maximize the expected utility of the wealth 

process step by step to determine optimal portfolios. 

The paper is organized as follows. Section 2 intro-

duces a new approach of the local utility maximization in 

a simple discrete-time setting. Section 3 generalizes the 

approach to continuous-time. In Section 4 we illustrate 

hedging by the approach given in this paper in a concrete 

model. 

2. Discrete-time markets 

We start with a general model of a frictionless security 

market where investors are allowed to trade continuous 

up to some fixed finite planning horizon T. Uncertainty 

in the financial market is modelled by a probability space 

（ ，F，P ）and a filtration F  0( )t t T F  satisfying 
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the usual conditions of right-continuity and completeness. 

We assume that the σ-field  is trivial, and that 

. 
0F

)dS

, ,

T F F

There are d+1 primary traded assets, whose price 

processes are given by stochastic processes . 

We assume that  follows an adapted, 

right-continuous with left-limits (RCLL) and strictly 

positive semimartingale on ( ). Security 

0 plays a special role. As a numera'ire by which all other 

assets are discounted it can be interpreted as the bench-

mark for risklessness. Form now on we consider only the 

discounted price process =

0 , , dS S
0( , ,S S 



S

0( ) ,t t T P F F

0

0( ,1 , )d

S
S S 0 0

11 1(1, , , )d

S S
S S   

Self-financing trading strategies are modelled by 

-valued, predictable, stochastic process 1d �
0( , , )d    , where i

t denotes the number of shares 

of security i in portfolio at time t. If the (vector) stochas-

tic integral exists, we can define the real-valued dis-

counted gain process ( )G   by 
0

 and 

the discounted value process (wealth process) 

( ) :t

t

s sG dS   

( )V   by 

0 ( )( )V V (t tG )    , where 0 (V )  is called the initial 

investment or endowment of  the investors. The trading 

constraints are given in form a 

set , for  and 

 for , where 

 are differentiable, convex map-

pings and  are affine mappings. 

Typical choices are 

: {M  �
0

:r d  �
1

:d i

�

, ,f f

(

r m

)f

:
d

0 
}i r m

 �

1, ,i r 

( )if  
1, ,f f

1,  

d �

M  �  (no constraints), dM  �  

(no short sales), 1 }d d{M �   (fixed position in 

security d). By  we denote the set of all trading 

strategies

M

  such that  for 

any ( ,

1( ,, d
t t  )( , )t M 

) [t 0, ]T  . Throughout this paper, we assume 

that that the subset , for { : ( )  0 1, ,id if � r   

and  for  of M is non-empty 

and write 

( ) 0 if 1, 
1( ,

, }m

,

i r
i i



)d( ) :f f    for . 

 

0 1( , ,   
1d d , ) �

Throughout this section, we restrict ourselves to a dis-

crete-time market, i.e., we assume that  is piecewise 

constant on the open intervals between integer times. In 

this case we can define the real-valued discounted gain  

S

process ( )G   by (where 
1

t

t ss
G S 


  ( ) s

1s s  sS 
S S   ) and the discounted value process 

(wealth process) 0 ( ) ( )G( )V Vt t    . 

The specification of the investor's attitude towards risk 

is done in terms of a utility function as follows: 

2.1 Definition  

A function :u � �  will be called the utility function 

if it satisfies 

a) u is two times continuously differentiable. 

b) The derivatives  are bounded and ,u u 

lim ( ) 0
x

u x


  . 

c) ( ) 0, ( ) 0u x u x   , for any . x �
With  we denote the set of all trading strate-

gies 

1( )SF

  with 
1

( | |)
T

t tt
E S


    .In the following, 

we will provide an alternative approach to choose trading 

strategy. 

2.2 Definition  

A strategy  will be called u-optimal for 

 if, for t

1( )S  M F

M  1, ,T , 

1( ( ( ))) ( ( ( ) ))t t tE u V E u V S     
t ,  (2.1) 

where   is any strategy of . 1( )SM F

Remark It is well-known that the most popular opti-

mality criterion is maximization of the terminal wealth 

( )TV  , i.e., a strategy a  will be called u-optimal if 

( ( TE u V ( )))  ( ( TE u V ( )))  for any strategy a  , 

where a  is a suitable set of the set self-financing 

trading strategies. In addition, the local utility notion is 

given by Kallsen (1999, 2002), i.e., a strategy 

 will be called u-optimal if 1( )S F

( )))G

 M

( (E u ( (E u ( )))t tG   
1 F

V



( )S

( )

, , for any 

strategy , where . 

Obviously, our concept defined in Definition 2.2 is re-

lated to maximization of expected local utility but, dif-

ferent from the above local utility, the discounted finan-

cial wealth process 

t  1, ,T

( )t  M :  tG S   t

  is also considered. 

For the sake of the discussion in continuous-time 

markets, we will give the equivalent form of Definition 

2.2 as follows: 

2.2.1 Definition 

We call a strategy  u-optimal for  

if there exist ,

1( )S  M F

1, ,t T

M

0ta   
T T

 such that 

1( ( )) ( ( ) )t t t t t tE a u V E a u V S      
1 1t t   

where 

   
 


,   (2.2)  

 1(SM F is any strategy of . )

Remark Obviously, (2.2) follows from (2.1),where 

1ta  , 1, 2, ,t T  .Conversely, assume that (2.2) holds. 
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For any  fixed, let 1 t T  k k    as 

, , and k t 1, 2, ,t T t t   

(
T T

E a



 
 

))) (E a

{ :

. Then, (2.2) yields that 

1
1

( )t t
t

u V 


 

1( (t t tu V 1t
This 

shows that ,i.e., 

(2.1) is true. 

( ( ))t tu V
 
 

( ( (t tE a u V

M

)t tS 

) t S  

E a  
 

 ) 

i

)

2.3 Theorem  

Suppose that d i    �   for 1,i k   

for some , . Then a 

trading strategy  is u-optimal for M  

if and only if  

, d } {0,
 M

( (E u V

1,

S

, }k d
1( )S F

( )) i
t tS  

,i k

1d

1,k  d  �

) 0

,t T



| 1t F , 

where  and . 1, 

Proof. A short calculation using II.2.14 and II.1.26 of 

Jacod and Shiryaev (1987)[12] shows that this is special 

case of the more general Corollary 3.1 proved  below.  

3. Continuous-Time Markets 

Now we turn to continuous-time case. The general 

mathematical framework is as in Section 2. Furthermore, 

we assume that  is a � -valued special semi-

martingale with characteristics (B, C, ) (cf. Definition 

II.2.6 in Jacod and Shiryaev (1987)[12]). By II.2.9 and 

2.29 of Jacod and Shiryaev (1987)[12], one can write (B, 

C, ) in the form 

0 0
( ( ))t t , ,s s

t t

s s tB x 

A
1d �

) ( 1)d 



h x 

loc


,� F

b dA C 

d

c dA  A F  , 

where  is a predictable process, b is a predict-

able -valued process, c is a predictable 

-valued process whose values are symmetric, 

non-negative definite matrices, and F is a transition ker-

nel from ( ) into (

( 1d  �

( 1)� ，B ). Typical 

choices for A are 

( 1)d

:tA t (e.g. for Lévy processes, diffu-

sions, Itô processes etc.) and \{0}: 1Ns t
( )tA s




)
 (dis-

crete-time processes). By  we denote the set of 

all trading strategies 

(S1F

  satisfying 

0 t

T

t b t t tc  
  （

2 1(( ) ) ( )t t t ( )tx x F dx dA    ） L P

1{ }n n

 

In order to extend Definition 2.2' from discrete-time to 

continuous-time, we firstly give the following limit 

theorem. 

3.1 Theorem  

Let    be a positive sequence satisfying to 

1
1nn




 ,and ( )

n n N  be a sequence of discrete 

sets  

0n
 { , , }

n

n n
mt t   

with 0 1
n nt t T0

n

n
mt    . 

Suppose that 

 :
n

 sup 1{ : {1, , }}ni mn n
i it t  0   as 

.  n  

Let   be any trading strategy in . Then we 

have 

( )S1F

1
1

( (
n

n
n i

m

m i t
i

E u  





 ))V  





              

 )t dA
( )

0( )u x E 0 ( ( ),
T

tV 

0 0x V
t

 (3.1) 

as n → ∞, where   andγ(. , .) is defined as 

follows: 

3.2 Definition  

For any 1d  , t  � � , we call the random variable  

( ( ), )t tV     

'(u V ( ))t t b  ''( ( )) / 2t t t tu V c  
   t

) ( ( ))t t tx u V( ( ( )u V      

( )) )t tu V x
  

'( ( )tF dx    

the local  utility of   in time t. 

Remark  It is surprising that the right hand of (3.1) only 

depends on 
1

1nn


  but does not depend on the 

concrete values of 1{ }n n  . 

The previous theorem inspires the following defini-

tion. 

3.3 Definition  

We call a trading strategy  u-optimal 

for  if  

1( )S  M F

M

 ), )t t dA

1( )SF
1( )S F

1  M F

( ( ),t t

 0 0
( ( ( ( ), )

T T

t t tE V E V dA       
t

A

 

for any .   M

Remark   is u-optimal for if and 

only if, for any , 

 M M

( )S

( ( ), ) )( )t tV V P       

]

 -almost all 

( , ) [0,t T   . 

3.4 Theorem  

A strategy  is  u-optimal for  if 

and only if there exist

1(SM F

1

)  M

, , m   �  with 0i   and 
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( ) 0j
j tf    for  such that  1, ,j  

( ( ))t tu V b

r

t( ( ))i i
t tu V c  

     

( ) ( ( ))) ( )i
t t( ( )t tx u V   

1

m
j

j j
j

D f




x u V F dx   

(P A

 

( ) 0t 

) T

            (3.2) 

for -almost all ( , ) [0, ]t   where 

,  denotes the i-th partial derivative of the 

function f. 

1, ,i d  iD f

M

3.5 Corollary  

Suppose that  

{ :d i i    �

 

( ( ))t tb u

for . 1, , }i k d  

Then a trading strategy  is u-optimal 

for  if and only if 

1( )SM F

M

( ( ))i i
t tu V V c t  

   

( ) )t t x  
 

( ( ( ( ))) ( ) 0t tV u V F dx   ix u
(P A


) T

 

for -almost all ( , ) [0, ]t  ,where 

. 1, ,i k 

1 F

: sup (2x R

Proofs 
Throughout we use the notations of Jacod and Shiryaev 

(1987)[12]. 

3.6 Proof of Theorem  

Since , in the same way of the first and sec-

ond steps of the proof of Theorem 3.1 in Kallsen 

(1999)[13], we easily see that . Moreover, let 

( )S

( )u x

( )L S  

( ) |x) sup |x R u    

| ( (V

 , it is easy to prove 

that  

), ) |t t     

21
| |t t 

1( )S  F

(( ) | |) ( )
2 t t tx x F dx     T

t t tb c   

( ( ),t t  

 

By  

,  

we know that 1) ( ,V L  � pP , )P A . 

Since  is a special semimartingale and  

is predictable, for fixed  and ,then 

0
 is a special semimartingale with 

predictable part of bounded variation 

S

0( )n
it

V x   

1( )S  F

, )nm

t tdB

n
dS  

N (1,i

0

n
it

n
it

  and 

local martingale part 
0

. One easily 

verifies that the measure of jumps 



)( c 
n
it  d

tM
( ( ))nti

u V

d M


  of ( ( ))n
it

u V   

is given by 
( ( ))

([0, ]
nti

u V

t G


 ) 
( )

) ) ( ( ))) ( , )
nti

n n
i i

V

t t
x u V ds dx


  

 
 [0, ]1 1 ( ( (t G u V  

for any ,t G � B  with 0 and G ( ( ))nti
u V 

  is given 

by the same integral representation, but integrated with 

respect to 
( )nti

V 
  instead of 

( )nti
V 



) x

. Since  
( ( ))

( |
( )

2 |)
n nt ti i

V

x2 2(( | |)
u V

x x
 

   

nt
V

 , 

it follows that ( (
i

u ))  is a special semimartingale. By 

Itô's formula, we can obtain that  

0 0

1
)

2

n n
i it t

  
) (x u V 

( ( )) ( (n
it

u V 

1, ]
( (

n d
it

u V


))d

( )

( ( ( )) ( ) , ( )c c c
t t t t

u V V u V d V V     

[0
( )) ( ( )) )t t t t tu V x        

0) ( )
n
i

t tu dB u x  



( ( )V 

1( , ]n n
i it t

t

�

( , )S dt dx 


( )n

0

t

  

Again, let 
1

1 1

: 1 ( )
n nm m i

t j
i j

 
 

 

 
 
 

 


1 1

))
n nm m

i i 
 

( )

0 0

T T

tA  
) (t x u V



u V

)V d

) 

 

we have 

1 1( ( ( )n
n ni

m it
u x     m i 

( ),t t 

1

( ) ( ( (
d t tu V 
�

0

tdS

S

 

( ( ))n c
t t tu V     

( )))( )( ,n S
t dt    

 

[0, ]
)

T
dx

( )( 1) ( (t tu V  

( )( 1)( ( ( )n
t tu V  





( )

0 0

1
( 1) ( ( ))
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3.
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ave that t1, we h   is a
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4. Example 
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to illustrate our approach in practice. The classical 
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tS e  with con-

stant interest rate r� , a stock 
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

for It is easy to verify 

It is well-known that the most commonly u ed ex

 

[0, ]t T . �( )S  1F . 

s am-

ples of utility functions are ( ) :u x  1 /(1 )x   for 

0 1  and ( ) : logu x x for 1  . There, 

( ''( )) / '( )xu x u x    is the meas or-

 aver ent of the 

ure of c

case,the co

onstant prop

efficitional risk

second term

sion. In this 

 1
t of   is 1  . The greater   is, the 

smaller the second term of 1
t  is. The first term of 1

t  

equals the perfect Black holes hedging strategy(cf. 

Lamberton and Lapeyre (199 [17], Remark 4.3.6). 
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