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Abstract: This paper consider the parallel variable distribution (PVD) approach proposed by Ferris and 
Mangasarian for solving optimization problem. This paper propose to apply the PVD approach to problems 
with general convex constraints and show that the algorithm converges, provided certain conditions are 
imposed on the change of secondary variables. In this paper, we choose to use the projected gradient direction 
for secondary variables and replace the minimization problem with a sufficient descent condition in the 
parallelization stage.  

Keywords: parallel variable distribution; projected gradient residual function; sufficient descent condition; 
general convex constraints 

 

1 Introduction 

We first describe the PVD algorithm proposed in [1].We 

consider the nonlinear program: min ( )
X

f x
x

 where X  is 

a nonempty closed convex set in n
R  and :

n
f R R
n

  

has continuous first partial derivatives in R . Suppose 

there are p  processors which divide the variable 
nx R  into blocks x1, x2,   ,xp, where l l

x n
p

n l
l
,

1

l 


, 

among p  processors. Given iteration i n
x R , 

processor  has primary responsibility for updating 

block 

l
lni

x Rl   of the iterate i
x .The general framework 

of PVD algorithm is as follows: 

Algorithm 1. Start with any 0 n
x R . Having i

x , stop if 

. Otherwise, compute   0
i

f x  1i
x
  as follows: 

 Parallelization: For each processor   1,...,l p   

(1.1) compute  , iy
l

i
l   

   arg min , : ,
,

i ix f x x Dl l ll lxl l

i
l l

  


    

 Synchronization: compute 1ix   such that  

 
 

 1

1,...,
min ,i i

l l ll p
f x yi i 


  

We will sometimes refer to ix  as the base point at 

the -st iteration. In the above algorithm  1i   l  

denotes the complement of in the set  and l 1,..., p
1p

l
  R  . The matrix i

l
D  is an  1n p 

l
 block 

diagonal matrix formed by placing the blocks 

1 1..,i i,. pd d  ( , ) of an arbitrary 

direction  along its block diagonal. 

tni
td R 1,.t p .., 1

nid R
We consider in this paper the following problem[2]: 

(1.2)  min f x

:
n

 such that    0g x 

where f R  R  and :
n m

g R R are  1 nC R . If 

the constraints are not separable, having a stationary 

point that results from minimizing the objective function 

with respect to individual blocks of variables 

, , ..1 2 .,x x x p  and subject to the problem constraints 

  0g x   does not result in a useful point. This is easily 

illustrated by the following simple example in 2
R : 

(1.3) 2
1

2
2min x x  such that  1 2 2x x 

This strongly convex problem has a unique global 

solution at 1 2 1x x  . However, the point 

 is a global minimum with respect to 

each of 
1 0.5,x  2 1.5x 

1x  and 2x  separately, subject to the problem 

constraint. That is  

 1
1

2
2.25 0.51arg min xxx  0.5   

 2
2

2
0.25 1.52rg min xxx  1.5 a

1

 

This property is possessed by all points in the first 

quadrant lying on the constraint . None of 

these points are of any use except the solution 

21 2x x 

1 2x x  . 

2 PVD with inexact subproblem solution 

In this paper, we choose projected gradient residual 

function[2]:  

(2.1)   : cr x x P x f x      
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as PVD direction.  
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(2.2)    :i i i
l l

l
d r x r x     1,l p   

Furthermore, we replace the minimization problem in 

(1.1) with the following sufficient descent condition: 

(2.3)  Computer  ,i iyl l
  such that  

    , ,i i i i iy x r x ei il l l l ll l
        

where 
l

e  is a vector of ones of appropriate dimension, 

and (2.4): 

   1 11
: min 1, ir xi lL

  
 




   
  

   
  0,1   

So we can get a new inexact PVD algorithm for 

problem (1.2). 

Algorithm2.5. Start with any 0 n
x R . Having i

x , stop if 

. Otherwise, compute   0
i

f x  1i
x
  as follows: 

 Parallelization: For each Processor  1,...,l p   

   
,

min , : ,
l l

i i
l l ll lx

x f x x D


i

l l
     

Computer  ,i i
l l

y   such that   

    , ,i i i i i
l l l l i l il l

y x r x       e  

 Synchronization: compute 1ix   such that  

 
 

 1

1,...,
min ,i i

l l ll p
f x yi i 


  

Theorem 2.6. Let . Suppose    1, n
Lf C R   ix  is 

any sequence generated by PVD algorithm 2.2. Then 

either  f   is unbounded from below on C  or the 

sequence  converges, the sequence   if x    ir x  

converges to zero and every accumulation point of the 

sequence  ix  satisfies the minimum principle 

necessary optimality condition. 

Proof:  

  ,i i
l i l il l l

x r x x D e    

    ,i i
l i l il l

x r x x r x     

 i i
ix r x   

   1 i i i
i i Cx P x f x C          

where the first equality follows from the block diagonal 

structure of i

l
D  and (2.2), the last equality follows 

from (2.1), and the inclusion is by convexity of the set 

. We further obtain  C

   ,i i i
l l l l

f x f y x D i   

   ,0 ,i i i i i
l l l l l

x y 

    ,0 ,i i i i
l l l l i l i l

x x r x e        

    ,i i
l i l il l

f x f x r x x D e     i

l

    i i i
if x f x r x    

where the inequality follows from (2.3). Furthermore,  

    i i
if x r x f x  i  

    
0

,
i i i if x tr x r x dt


     

   ,i i
i f x r x    

      
0

,
i i i i if x tr x f x r x dt


     

      1

0
,

ii i i
i f x r x L t r x dt

 


    

     
1 1

,
1

i i ii
i

L
f x r x r x

 




 
   


 

where the equality follows from the Holder continuity of 

 f   and the Cauchy-Schwarz inequality. Hence 

(2.7)    ,i i i
l l l l

f x f y x D i   

     
1 1

,
1

i i ii
i

L
f x r x r x

 




 
  


 

By properties of the projection operator[5], for any 
nx R  and any y C , it holds that  

   , 0C Cx P x y P x    

Taking  i ix x f x   and , we have: iy x C 
0         ,i i i i i

C Cx f x P x f x x P x f x    i i  

     ,i ir x f x r x  i  

Hence        , ,i i i ir x r x f x r x   

The latter relation combined with (2.7) yields 

   ,i i i
l l l l

f x f y x D i   

     
1 1

,
1

i i ii
i

L
r x r x r x

 




 
 


 

   2 1

1
1

i ii
i

L
r x r x

 



 

   
    2

1 i
i r x    

 1 m  in  

     12 11
,i ir x r xlL

  


   
  

   
where the 

last two inequalities follow from the choice of i . By 

the synchronization step , we have  

(2.8)     1i if x f x       
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       
1

2 11
1 min ,i i

lr x r x
L


   

      
  





 3 Conclusions 

It was established that the parallel variable distrib- 

ution approach can be successfully applied to solve 

optimization problems with general convex constraints. 

Furthermore , conditions imposed on solving parallel 

subproblems were considerably relaxed, thus yielding a 

more practical framework. 

Thus the sequence   if x   is nonincreasing. If 

 f   is bounded below on , then C   if x

   0ir x 

 is 

bounded and hence it converges. In the latter case, 

 and therefore  by 

(2.8). By continuity of 
    1 0i if x  f x

 ir x , it follows that for every 

accumulation point x  of the sequence  ix ,   0r x  . 

Thus all accumulation points of  ix  satisfy the 

minimum principle necessary optimality condition. 
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0
1 0.5x 

1 

0
2 1.5x 

 0 1r x   0
1r x 2

        
1 2

22 20 0 0
1 2 2 2 1 2 2 2 2,

min , 2
x

0f x x r x x x x


        
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