A Gas Dynamics Method Based on the Spectral Deferred Corrections (SDC) Time Integration Technique and the Piecewise Parabolic Method (PPM)
Samet Y. Kadioglu
.
DOI: 10.4236/ajcm.2011.14037   PDF    HTML     6,073 Downloads   10,036 Views   Citations

Abstract

We present a computational gas dynamics method based on the Spectral Deferred Corrections (SDC) time integration technique and the Piecewise Parabolic Method (PPM) finite volume method. The PPM framework is used to define edge-averaged quantities, which are then used to evaluate numerical flux functions. The SDC technique is used to integrate solution in time. This kind of approach was first taken by Anita et al in [1]. However, [1] is problematic when it is implemented to certain shock problems. Here we propose significant improvements to [1]. The method is fourth order (both in space and time) for smooth flows, and provides highly resolved discontinuous solutions. We tested the method by solving variety of problems. Results indicate that the fourth order of accuracy in both space and time has been achieved when the flow is smooth. Results also demonstrate the shock capturing ability of the method.

Share and Cite:

S. Kadioglu, "A Gas Dynamics Method Based on the Spectral Deferred Corrections (SDC) Time Integration Technique and the Piecewise Parabolic Method (PPM)," American Journal of Computational Mathematics, Vol. 1 No. 4, 2011, pp. 303-317. doi: 10.4236/ajcm.2011.14037.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. T. Layton and M. L. Minion, “Conservative Multi- Implicit Spectral Deferred Correction Methods for Re- acting Gas Dynamics,” Journal of Computational Physics, Vol. 194, No. 2, 2004, pp. 697-714. doi:10.1016/j.jcp.2003.09.010
[2] S. K. Godunov, “Finite Difference Methods for Numeri- cal Computations of Discontinuous Solutions of Equa- tions of Fluid Dynamics,” Math Sbornik, Vol. 47, 1959, pp. 271-306.
[3] B. van Leer, “Toward the Ultimate Conservative Differ- ence Scheme. II. Monotonicity and Conservation Com- bined in a Second Order Scheme,” Journal of Computa- tional Physics, Vol. 14, No. 4, 1974, pp. 361-370. doi:10.1016/0021-9991(74)90019-9
[4] J. B. Goodman and R. J. LeVeque, “A Geometric Approach to High Resolution TVD Schemes,” SIAM Jour- nal of Numerical Analysis, Vol. 25, No. 2, 1988, pp. 268- 284. doi:10.1137/0725019
[5] P. Colella, “A Direct Eulerian MUSCL Scheme for Gas Dynamics,” SIAM Journal on Scientific Computing, Vol. 6, No. 1, 1985, pp. 104-117. doi:10.1137/0906009
[6] S. F. Davis, “Simplified Second-Order Godunov-Type Me- thods,” SIAM Journal on Scientific Computing, Vol. 9, No. 3, 1988, pp. 445-473. doi:10.1137/0909030
[7] P. Colella and P. R. Woodward, “The Piecewise Para- bolic Method (PPM) for Gas-Dynamics Simulations,” Journal of Computational Physics, Vol. 54, No. 1, 1984, pp. 174-201. doi:10.1016/0021-9991(84)90143-8
[8] C. Shu and S. Osher, “Efficient Implementation of Essen- tially Non-Oscillatory Shock Capturing Schemes II,” Jour- nal of Computational Physics, Vol. 83, No. 1, 1989, pp. 32-78. doi:10.1016/0021-9991(89)90222-2
[9] X. Liu, S. Osher, and T. Chan, “Weighted Essentially Non- Oscillatory Schemes,” Journal on Scientific Computing, Vol. 115, No. 1, 1994, pp. 200-212. doi:10.1006/jcph.1994.1187
[10] A. Harten, “High Resolution Schemes for Hyperbolic Con- servation Laws,” Journal of Computational Physics, Vol. 49, No. 3, 1983, pp. 357-393. doi:10.1016/0021-9991(83)90136-5
[11] J. Boris and D. Book, “Flux Corrected Transport 1: SHASTA, a Fluid Transport Algorithm That Works,” Journal of Computational Physics, Vol. 11, No. 1, 1973, pp. 38-69. doi:10.1016/0021-9991(73)90147-2
[12] S. Serna, “A Class of Extended Limiters Applied to Pie- cewise Hyperbolic Methods,” SIAM Journal on Scientific Computing, Vol. 28, No. 1, 2006, pp. 123-140. doi:10.1137/040611811
[13] R. Artebrant and H. J. Schroll, “Conservative Logarith- mic Reconstructions and Finite Volume Methods,” SIAM Journal on Scientific Computing, Vol. 27, No. 1, 2005, pp. 294-314. doi:10.1137/03060240X
[14] R. Artebrant and H. J. Schroll, “Limiter-Free Third Order Logarithmic Reconstruction.” SIAM Journal on Scientific Computing, Vol. 28, No. 1, 2006, pp. 359-381. doi:10.1137/040620187
[15] H. Q. Yang and A. J. Przekwas, “A Comparative Study of Advanced Shock-Capturing Schemes Applied to Burgers’ Equation,” Journal on Scientific Computing, Vol. 102, No. 1, 1992, pp. 139-159. doi:10.1016/S0021-9991(05)80012-9
[16] R. Liska and B. Wendroff, “Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations,” Technical Report, Los Alamos Laboratory, 22 November 2001.
[17] P. Woodward and P. Colella, “The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks,” Journal on Scientific Computing, Vol. 54, No. 1, 1984, pp. 115-173. doi:10.1016/0021-9991(84)90142-6
[18] R. J. Leveque, “Finite Volume Methods for Hyperbolic Pro- blems,” Cambridge University Press, Cambridge, 2003.
[19] R. Hannappel, T. Hauser and R. Friedrich, “A Compari- son of ENO and TVD Schemes for the Computation of Shock-Turbulence Interaction,” Journal of Computational Physics, Vol. 121, No. 1, 1995, pp. 176-184. doi:10.1006/jcph.1995.1187
[20] S. Y. Kadioglu, R. Klein and M. L. Minion, “A Fourth- Order Auxiliary Variable Projection Methods for Zero Mach-Number Gas Dynamics,” Journal on Scientific Com- puting, Vol. 227, No. 3, 2008, pp. 2012-2043. doi:10.1016/j.jcp.2007.10.008
[21] C. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations,” Printice-Hall, Delhi, 1971.
[22] E. Hairer, S. P. Norsett, and G. Wanner, “Solving Ordi- nary Differential Equations I, Non-Stiff Problems,” Sprin- ger-Verlag, New York, 1993.
[23] J. D. Lambert, “Numerical Methods for Ordinary Differ- ential Equations,” Wiley, Hoboken, 1991.
[24] A. Dutt, L. Greengard, and V. Rokhlin, “Spectral Defer- red Correction Methods for Ordinary Differential Equa- tions,” Bit Numerical Mathematics, Vol. 40, No. 2, 2000, pp. 241-266. doi:10.1023/A:1022338906936
[25] M. L. Minion, “Semi-Implicit Projection Methods for In- compressible Flow Based on Spectral Deferred Correc- tions,” Applied Numerical Mathematics, Vol. 48, No. 3-4, 2004, pp. 369-387. doi:10.1016/j.apnum.2003.11.005
[26] A. T. Layton and M. L. Minion, “Implications of the Choice of Quadrature Nodes for Picard Integral Deferred Corrections Methods for Ordinary Differential Equa- tions,” Bit Numerical Mathematics, Vol. 45, No. 2, 2005, pp. 341-373. doi:10.1007/s10543-005-0016-1
[27] B. E. McDonald and J. Ambrosiano, “High-Order Up- wind Flux Correction Methods For Hyperbolic Conserva- tion Laws,” Journal on Scientific Computing, Vol. 56, No. 3, 1984, pp. 448-460. doi:10.1016/0021-9991(84)90106-2
[28] G. Sod, “A Survey of Several Finite Difference Methods for Systems of Nonlinear Conservation Laws,” Journal on Scientific Computing, Vol. 27, No. 1, 1978, pp. 1-31. doi:10.1016/0021-9991(78)90023-2
[29] J. O. Langseth and R. J. LeVeque, “A Wave Propagation Method for Three-Dimensional Hyperbolic Conservation Laws,” Journal on Scientific Computing, Vol. 165, No. 1, 2000, pp. 126-166. doi:10.1006/jcph.2000.6606

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.