Share This Article:

Recent Advances in Drug Delivery Systems

Abstract Full-Text HTML Download Download as PDF (Size:287KB) PP. 510-526
DOI: 10.4236/jbnb.2011.225062    17,677 Downloads   36,425 Views   Citations

ABSTRACT

Drug targeting to specific organs and tissues has become one of the critical endeavors of the century since the use of free drugs in conventional dosage forms generally involves difficulties in achieving the target site at the appropriate dose after or during a proper time period. Consequently, the search for new drug delivery approaches and new modes of action represent one of the frontier research areas. New drug delivery systems include lipidic, proteic and polymeric technologies to provide new sustained drug delivery with better body distribution, drug protection from harsh external environment and avoidance of drug clearance. Many of these technologies have reached the market therefore proving the benefits of these new carriers. This review covers the generalities of those new carriers and their new advances in drug delivery.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Martinho, N. , Damgé, C. and Reis, C. (2011) Recent Advances in Drug Delivery Systems. Journal of Biomaterials and Nanobiotechnology, 2, 510-526. doi: 10.4236/jbnb.2011.225062.

References

[1] R. Haag and F. Kratz, “Polymer Therapeutics: Concepts and Applications,” Angewandte Chemie International Edition, Vol. 45, No. 8, 2006, pp. 1198-1215. doi:10.1002/anie.200502113
[2] B. Semete, L. Booysen, Y. Lemmer, L. Kalombo, L. Katata, “In Vivo Evaluation of the Biodistribution and Safety of PLGA Nanoparticles as Drug Delivery Systems,” Nanomedicine, Vol. 6, No. 5, 2010, pp. 662-671. doi:10.1016/j.nano.2010.02.002
[3] H. C. Korting and M. Schafer-Korting, “Carriers in the Topical Treatment of Skin Disease,” Handbook of Experimental Pharmacology, Vol. No. 197, 2010, pp. 435-468.
[4] S. Wang, M. Tan, Z. Zhong, M. Chen and Y. Wang, “Nanotechnologies for Curcumin: An Ancient Puzzler Meets Modern Solutions,” Journal of Nanomaterials, Vol. Vol. 2011, No. 2011, p. 8.
[5] A. V. Kabanov and E. V. Batrakova, “New Technologies for Drug Delivery across the Blood Brain Barrier,” Current Pharmaceutical Design, Vol. 10, No. 12, 2004, pp. 1355-1363. doi:10.2174/1381612043384826
[6] J. R. Lattin, D. M. Belnap and W. G. Pitt, “Formation of Eliposomes as a Drug Delivery Vehicle,” Colloids and Surfaces B: Biointerfaces, Vol. 89, 2011, pp. 93-100.
[7] L. E. van Vlerken, Z. Duan, S. R. Little, M. V. Seiden and M. M. Amiji, “Biodistribution and Pharmacokinetic Analysis of Paclitaxel and Ceramide Administered in Multifunctional Polymer-Blend Nanoparticles in Drug Resistant Breast Cancer Model,” Molecular Pharmaceutics, Vol. 5, No. 4, 2008, pp. 516-526. doi:10.1021/mp800030k
[8] R. Li, L. Xie, Z. Zhu, Q. Liu and Y. Hu, “Reversion of pH-Induced Physiological Drug Resistance: A Novel Function of Copolymeric Nanoparticles,” PLoS One, Vol. 6, No. 9, 2011, p. e24172. doi:10.1371/journal.pone.0024172
[9] C. J. Thompson, D. Hansford, S. Higgins, C. Rostron and G. A. Hutcheon, “Evaluation of Ibuprofen-Loaded Microspheres Prepared from Novel Copolyesters,” International Journal of Pharmaceutics, Vol. 329, No. 1-2, 2007, pp. 53-61. doi:10.1016/j.ijpharm.2006.08.019
[10] S. Jhunjhunwala, G. Raimondi, A. W. Thomson and S. R. Little, “Delivery of Rapamycin to Dendritic Cells Using Degradable Microparticles,” Journal of Controlled Release, Vol. 133, No. 3, 2009, pp. 191-197. doi:10.1016/j.jconrel.2008.10.011
[11] S. Lee, S. C. Yang, C. Y. Kao, R. H. Pierce and N. Murthy, “Solid Polymeric Microparticles Enhance the Delivery of siRNA to Macrophages in Vivo,” Nucleic Acids Research, Vol. 37, No. 22, 2009, p. e145. doi:10.1093/nar/gkp758
[12] E. Allemann, J. Leroux and R. Gurny, “Polymeric Nano- and Microparticles for the Oral Delivery of Peptides and Peptidomimetics,” Advanced Drug Delivery Reviews, Vol. 34, No. 2-3, 1998, pp. 171-189. doi:10.1016/S0169-409X(98)00039-8
[13] P. Couvreur and F. Puisieux, “Nano- and Microparticles for the Delivery of Polypeptides and Proteins,” Advanced Drug Delivery Reviews, Vol. 10, No. 1993, pp. 141-162.
[14] S. Freiberg and X. X. Zhu, “Polymer Microspheres for Controlled Drug Release,” International Journal of Pharmaceutics, Vol. 282, No. 1-2, 2004, pp. 1-18. doi:10.1016/j.ijpharm.2004.04.013
[15] J. Panyam and V. Labhasetwar, “Biodegradable Nanoparticles for Drug and Gene Delivery to Cells and Tissue,” Advanced Drug Delivery Reviews, Vol. 55, No. 3, 2003, pp. 329-347. doi:10.1016/S0169-409X(02)00228-4
[16] C. Pinto Reis, R. J. Neufeld, A. N. J. Ribeiro and F. Veiga, “Nanoencapsulation I. Methods for Preparation of Drug- Loaded Polymeric Nanoparticles,” Nanomedicine: Nano- technology, Biology, and Medicine, Vol. 2, No. 1, 2006, pp. 8-21. doi:10.1016/j.nano.2005.12.003
[17] M. P. Desai, V. Labhasetwar, E. Walter, R. J. Levy and G. L. Amidon, “The Mechanism of Uptake of Biodegradable Microparticles in Caco-2 Cells Is Size Dependent,” Pharmaceutical Research, Vol. 14, No. 11, 1997, pp. 1568- 1573. doi:10.1023/A:1012126301290
[18] Y. Avnir, K. Turjeman, D. Tulchinsky, A. Sigal, P. Kizelsztein, “Fabrication Principles and Their Contribution to the Superior in Vivo Therapeutic Efficacy of Nano-Liposomes Remote Loaded with Glucocorticoids,” PLoS One, Vol. 6, No. 10, 2011, p. e25721. doi:10.1371/journal.pone.0025721
[19] M. Taglietti, C. N. Hawkins and J. Rao, “Novel Topical Drug Delivery Systems and Their Potential Use in Acne Vulgaris,” Skin Therapy Letter, Vol. 13, No. 5, 2008, pp. 6-8.
[20] W. Geldenhuys, T. Mbimba, T. Bui, K. Harrison and V. Sutariya, “Brain-Targeted Delivery of Paclitaxel Using Glutathione-Coated Nanoparticles for Brain Cancers,” Journal of Drug Targeting, Vol. 19, No. 9, 2011, pp. 837- 845. doi:10.3109/1061186X.2011.589435
[21] O. Taratula, O. B. Garbuzenko, P. Kirkpatrick, I. Pandya and R. Savla, “Surface-Engineered Targeted PPI Dendrimer for Efficient Intracellular and Intratumoral siRNA Delivery,” Journal of Controlled Release, Vol. 140, No. 3, 2009, pp. 284-293. doi:10.1016/j.jconrel.2009.06.019
[22] V. V. Mody, R. Siwale, A. Singh and H. R. Mody, “Introduction to Metallic Nanoparticles,” Journal of Pharmacy and Bioallied Sciences, Vol. 2, No. 4, 2010, pp. 282-289. doi:10.4103/0975-7406.72127
[23] D. Brambilla, B. Le Droumaguet, J. Nicolas, S. H. Hashemi and L. P. Wu, “Nanotechnologies for Alzheimer’s Disease: Diagnosis, Therapy, and Safety Issues,” Nanomedicine, Vol. 7, No. 5, 2011, pp. 521-540. doi:10.1016/j.nano.2011.03.008
[24] A. Beck, J. F. Haeuw, T. Wurch, L. Goetsch and C. Bailly, “The Next Generation of Antibody-Drug Conjugates Comes of Age,” Discovery Medicine, Vol. 10, No. 53, 2010, pp. 329-339.
[25] A. M. Wu and P. D. Senter, “Arming Antibodies: Prospects and Challenges for Immunoconjugates,” Nature Biotechnology, Vol. 23, No. 9, 2005, pp. 1137-1146. doi:10.1038/nbt1141
[26] A. L. Nelson, “Antibody Fragments: Hope and Hype,” MAbs, Vol. 2, No. 1, 2010, pp. 77-83. doi:10.4161/mabs.2.1.10786
[27] J. M. Reichert, “Antibody-Based Therapeutics to Watch in 2011,” MAbs, Vol. 3, No. 1, 2011, pp. 76-99. doi:10.4161/mabs.3.1.13895
[28] J. C. Olivier, R. Huertas, H. J. Lee, F. Calon and W. M. Pardridge, “Synthesis of Pegylated Immunonanoparticles,” Pharmaceutical Research, Vol. 19, No. 8, 2002, pp. 1137-1143. doi:10.1023/A:1019842024814
[29] J. C. Olivier, “Drug Transport to Brain with Targeted Nanoparticles,” NeuroRx, Vol. 2, No. 1, 2005, pp. 108- 119. doi:10.1602/neurorx.2.1.108
[30] H. M. Blau and M. L. Springer, “Gene Therapy—A Novel Form of Drug Delivery,” The New England Journal of Medicine, Vol. 333, No. 18, 1995, pp. 1204-1207. doi:10.1056/NEJM199511023331808
[31] Y. Z. Chen, X. L. Yao, Y. Tabata, S. Nakagawa and J. Q. Gao, “Gene Carriers and Transfection Systems Used in the Recombination of Dendritic Cells for Effective Cancer Immunotherapy,” Clinical and Developmental Immunology, Vol. 2010, 2010, Article ID 565643, 12 Pages. doi:10.1155/2010/565643
[32] H. Eliyahu, Y. Barenholz and A. J. Domb, “Polymers for DNA Delivery,” Molecules, Vol. 10, No. 1, 2005, pp. 34- 64. doi:10.3390/10010034
[33] B. Thaci, I. V. Ulasov, D. A. Wainwright and M. S. Lesniak, “The Challenge for Gene Therapy: Innate Immune Response to Adenoviruses,” Oncotarget, Vol. 2, No. 3, 2011, pp. 113-121.
[34] M. G. Cusi, “Applications of Influenza Virosomes as a Delivery System,” Human Vaccine, Vol. 2, No. 1, 2006, pp. 1-7. doi:10.4161/hv.2.1.2494
[35] G. Fricker, T. Kromp, A. Wendel, A. Blume and J. Zirkel, “Phospholipids and Lipid-Based Formulations in Oral Drug Delivery,” Pharmaceutical Research, Vol. 27, No. 8, 2010, pp. 1469-1486. doi:10.1007/s11095-010-0130-x
[36] I. Gilead Sciences, “AmBisome,” 2011. http://www.ambisome.com/index2.php?section=about&page=intro
[37] S. R. Schaffazick, A. R. Pohlmann, C. A. de Cordova, T. B. Creczynski-Pasa and S. S. Guterres, “Protective Properties of Melatonin-Loaded Nanoparticles against Lipid Peroxidation,” International Journal of Pharmaceutics, Vol. 289, No. 1-2, 2005, pp. 209-213. doi:10.1016/j.ijpharm.2004.11.003
[38] M. S. Arayne, N. Sultana and F. Qureshi, “Review: Nanoparticles in Delivery of Cardiovascular Drugs,” Pakistan Journal of Pharmaceutical Sciences, Vol. 20, No. 4, 2007, pp. 340-348.
[39] G. A. Castro, R. L. Orefice, J. M. Vilela, M. S. Andrade and L. A. Ferreira, “Development of a New Solid Lipid Nanoparticle Formulation Containing Retinoic Acid for Topical Treatment of Acne,” Journal of Microencapsulation, Vol. 24, No. 5, 2007, pp. 395-407. doi:10.1080/02652040701288519
[40] E. Esposito, E. Menegatti and R. Cortesi, “Ethosomes and Liposomes as Topical Vehicles for Azelaic Acid: A Preformulation Study,” Journal of Cosmetic Science, Vol. 55, No. 3, 2004, pp. 253-264.
[41] P. Karande and S. Mitragotri, “Enhancement of Transdermal Drug Delivery via Synergistic Action of Chemicals,” Biochimica et Biophysica Acta, Vol. 1788, No. 11, 2009, pp. 2362-2373. doi:10.1016/j.bbamem.2009.08.015
[42] R. D. Miclea, P. R. Varma, A. Peng and S. V. BaluIyer, “Development and Characterization of Lipidic Cochleate Containing Recombinant Factor VIII,” Biochimica et Biophysica Acta, Vol. 1768, No. 11, 2007, pp. 2890-2898. doi:10.1016/j.bbamem.2007.08.001
[43] A. M. Sesana, R. Monti-Rocha, S. A. Vinhas, C. G. Morais and R. Dietze, “In Vitro Activity of Amphotericin B Cochleates against Leishmania Chagasi,” Memórias do Instituto Oswaldo Cruz, Vol. 106, No. 2, 2011, pp. 251- 253. doi:10.1590/S0074-02762011000200022
[44] O. Perez, G. Bracho, M. Lastre, N. Mora and J. del Campo, “Novel Adjuvant Based on a Proteoliposome- Derived Cochleate Structure Containing Native Lipopoly- saccharide as a Pathogen-Associated Molecular Pattern,” Immunology & Cell Biology, Vol. 82, No. 6, 2004, pp. 603-610. doi:10.1111/j.1440-1711.2004.01293.x
[45] Z. Yang, X. Peng, Y. Tan, M. Chen and X. Zhu, “Optimization of the Preparation Process for an Oral Phytantriol-Based Amphotericin B Cubosomes,” Journal of Nanomaterials, Vol. Vol. 2011, No. 2011, p. 10.
[46] D. Bei, T. Zhang, J. B. Murowchick and B. B. Youan, “Formulation of Dacarbazine-Loaded Cubosomes. Part III. Physicochemical Characterization,” AAPS PharmSciTech, Vol. 11, No. 3, 2010, pp. 1243-1249. doi:10.1208/s12249-010-9496-7
[47] H. Chung, J. Kim, J. Y. Um, I. C. Kwon and S. Y. Jeong, “Self-Assembled ‘Nanocubicle’ as a Carrier for Peroral Insulin Delivery,” Diabetologia, Vol. 45, No. 3, 2002, pp. 448-451. doi:10.1007/s00125-001-0751-z
[48] J. Manosroi, M. G. Apriyani, K. Foe and A. Manosroi, “Enhancement of the Release of Azelaic Acid through the Synthetic Membranes by Inclusion Complex Formation with Hydroxypropyl-beta-cyclodextrin,” International Journal of Pharmaceutics, Vol. 293, No. 1-2, 2005, pp. 235-240. doi:10.1016/j.ijpharm.2005.01.009
[49] R. R. Arvizo, O. R. Miranda, D. F. Moyano, C. A. Walden and K. Giri, “Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles,” PLoS One, Vol. 6, No. 9, 2011, p. e24374. doi:10.1371/journal.pone.0024374
[50] J. L. Arias, “Novel Strategies to Improve the Anticancer Action of 5-Fluorouracil by Using Drug Delivery Systems,” Molecules, Vol. 13, No. 10, 2008, pp. 2340-2369. doi:10.3390/molecules13102340
[51] S. K. Jain and N. K. Jain, “Multiparticulate Carriers for Sun-Screening Agents,” International Journal of Cosmetic Science, Vol. 32, No. 2, 2010, pp. 89-98. doi:10.1111/j.1468-2494.2010.00547.x
[52] T. Fauce, “Exploring the Safety of Nanoparticles in Australian Sunscreens,” International Journal of Biomedical Nanoscience and Nanotechnology, Vol. 1, No. 1, 2010, pp. 87-94. doi:10.1504/IJBNN.2010.034127
[53] P. C. Chen, S. C. Mwakwari and A. K. Oyelere, “Gold Nanoparticles: From Nanomedicine to Nanosensing,” Nanotechnology, Science and Applications, Vol. 1, No. 2008, pp. 45-66.
[54] L. M. Kaminskas, B. J. Boyd and C. J. Porter, “Dendrimer Pharmacokinetics: The Effect of Size, Structure and Surface Characteristics on ADME Properties,” Nanomedicine, Vol. 6, No. 6, 2011, pp. 1063-1084. doi:10.2217/nnm.11.67
[55] J. F. Kukowska-Latallo, K. A. Candido, Z. Cao, S. S. Nigavekar and I. J. Majoros, “Nanoparticle Targeting of Anticancer Drug Improves Therapeutic Response in Animal Model of Human Epithelial Cancer,” Cancer Research, Vol. 65, No. 12, 2005, pp. 5317-5324. doi:10.1158/0008-5472.CAN-04-3921
[56] A. R. Menjoge, R. M. Kannan and D. A. Tomalia, “Dendrimer-Based Drug and Imaging Conjugates: Design Considerations for Nanomedical Applications,” Drug Discovery Today, Vol. 15, No. 5-6, 2010, pp. 171-185. doi:10.1016/j.drudis.2010.01.009
[57] S. H. Medina, V. Tekumalla, M. V. Chevliakov, D. S. Shewach and W. D. Ensminger, “N-Acetylgalactosamine- Functionalized Dendrimers as Hepatic Cancer Cell-Targeted Carriers,” Biomaterials, Vol. 32, No. 17, 2011, pp. 4118- 4129. doi:10.1016/j.biomaterials.2010.11.068
[58] Y.-B. Lim, T. Kim, J. W. Lee, S.-M. Kim and H.J. Kim, “Self-Assembled Ternary Complex of Cationic Dendrimer, Cucurbituril, and DNA:? Noncovalent Strategy in Developing a Gene Delivery Carrier,” Bioconjugate Chemistry, Vol. 13, No. 6, 2002, pp. 1181-1185. doi:10.1021/bc025581r
[59] A. J. Velazquez, M. A. Carnahan, J. Kristinsson, S. Stinnett and M. W. Grinstaff, “New Dendritic Adhesives for Sutureless Ophthalmic Surgical Procedures: In Vitro Studies of Corneal Laceration Repair,” Archives of Ophthalmology, Vol. 122, No. 6, 2004, pp. 867-870. doi:10.1001/archopht.122.6.867
[60] A. K. Patri, A. Myc, J. Beals, T. P. Thomas and N. H. Bander, “Synthesis and in Vitro Testing of J591 Antibody-Dendrimer Conjugates for Targeted Prostate Cancer Therapy,” Bioconjugate Chemistry, Vol. 15, No. 6, 2004, pp. 1174-1181. doi:10.1021/bc0499127
[61] K. Sugisaki, T. Usui, N. Nishiyama, W. D. Jang and Y. Yanagi, “Photodynamic Therapy for Corneal Neovascularization Using Polymeric Micelles Encapsulating Dendrimer Porphyrins,” Investigative Ophthalmology & Visual Science, Vol. 49, No. 3, 2008, pp. 894-899. doi:10.1167/iovs.07-0389
[62] K. M. Kitchens, A. B. Foraker, R. B. Kolhatkar, P. W. Swaan and H. Ghandehari, “Endocytosis and Interaction of Poly(amidoamine) Dendrimers with Caco-2 Cells,” Pharmaceutical Research, Vol. 24, No. 11, 2007, pp. 2138-2145. doi:10.1007/s11095-007-9415-0
[63] P. Singh, “Dendrimers and Their Applications in Immunoassays and Clinical Diagnostics,” Biotechnology and Applied Biochemistry, Vol. 48, No. Pt 1, 2007, pp. 1-9.
[64] QIAGEN, “SuperFect Transfection Reagent,” http://www.qiagen.com/products/transfection/transfectionreagents/superfecttransfectionreagent.aspx#Tabs=t0
[65] STARPHARMA, “Transfection Reagents,” http://www.starpharma.com/life_sciences/transfection_reagents#article
[66] STARPHARMA, “Coatings, Inks and Adhesives,” http://www.starpharma.com/wider_uses/coatings__inks_and_adhesives#article
[67] DendriticNanotechnologiesInc., 2011. http://www.dnanotech.com/aboutus.asp
[68] C. F. Price, D. Tyssen, S. Sonza, A. Davie and S. Evans, “SPL7013 Gel (VivaGel(R)) Retains Potent HIV-1 and HSV-2 Inhibitory Activity Following Vaginal Administration in Humans,” PLoS One, Vol. 6, No. 9, 2011, p. e24095. doi:10.1371/journal.pone.0024095
[69] C. Pinto Reis, R. J. Neufeld, A. N. J. Ribeiro and F. Veiga, “Nanoencapsulation II. Biomedical Applications and Current Status of Peptide and Protein Nanoparticulate Delivery Systems,” Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 2, No. 2, 2006, pp. 53-65. doi:10.1016/j.nano.2006.04.009
[70] R. Alvarez-Roman, A. Naik, Y. N. Kalia, R. H. Guy and H. Fessi, “Enhancement of Topical Delivery from Biodegradable Nanoparticles,” Pharmaceutical Research, Vol. 21, No. 10, 2004, pp. 1818-1825. doi:10.1023/B:PHAM.0000045235.86197.ef
[71] N. Nafee, M. Schneider, U. F. Schaefer and C. M. Lehr, “Relevance of the Colloidal Stability of Chitosan/PLGA Nanoparticles on Their Cytotoxicity Profile,” International Journal of Pharmaceutics, Vol. 381, No. 2, 2009, pp. 130-139. doi:10.1016/j.ijpharm.2009.04.049
[72] A. C. B. P. Reis, “Encapsula??o de fáRmacos Peptídicos Pelo Método de Emulsifica??o/Gelifica??o Interna,” Ph.D. Thesis, Faculdade Farmácia Universidade de Coimbra, 2007.
[73] T. Y. Lim, C. K. Poh and W. Wang, “Poly(lactic-co-glycolic acid) as a Controlled Release Delivery Device,” Journal of Materials Science: Materials in Medicine, Vol. 20, No. 8, 2009, pp. 1669-1675. doi:10.1007/s10856-009-3727-z
[74] J. K. Park, J. Yeom, E. J. Oh, M. Reddy and J. Y. Kim, “Guided Bone Regeneration by poly(lactic-co-glycolic acid) Grafted Hyaluronic Acid Bi-Layer Films for Periodontal Barrier Applications,” Acta Biomaterialia, Vol. 5, No. 9, 2009, pp. 3394-3403. doi:10.1016/j.actbio.2009.05.019
[75] N. Vij, T. Min, R. Marasigan, C. N. Belcher and S. Mazur, “Development of PEGylated PLGA Nanoparticle for Controlled and Sustained Drug Delivery in Cystic Fibrosis,” Journal of Nanobiotechnology, Vol. 8, 2010, p. 22. doi:10.1186/1477-3155-8-22
[76] N. Csaba, A. Sanchez and M. J. Alonso, “PLGA: Poloxamer and PLGA: Poloxamine Blend Nanostructures as Carriers for Nasal Gene Delivery,” Journal of Controlled Release, Vol. 113, No. 2, 2006, pp. 164-172. doi:10.1016/j.jconrel.2006.03.017
[77] S. R. Little, D. M. Lynn, Q. Ge, D. G. Anderson and S. V. Puram, “Poly-Beta Amino Ester-Containing Microparticles Enhance the Activity of Nonviral Genetic Vaccines,” Proceedings of the National Academy of Sciences, Vol. 101, No. 26, 2004, pp. 9534-9539. doi:10.1073/pnas.0403549101
[78] D. Shenoy, S. Little, R. Langer and M. Amiji, “Poly(ethylene oxide)-Modified Poly(beta-amino ester) Nanoparticles as a pH-Sensitive System for Tumor-Targeted Delivery of Hydrophobic Drugs. 1. In Vitro Evaluations,” Molecular Pharmaceutics, Vol. 2, No. 5, 2005, pp. 357-366. doi:10.1021/mp0500420
[79] T. M. Allen, “Ligand-Targeted Therapeutics in Anticancer Therapy,” Nature Reviews Cancer, Vol. 2, No. 10, 2002, pp. 750-763. doi:10.1038/nrc903
[80] R. Gabathuler, “Development of New Peptide Vectors for the Transport of Therapeutic across the Blood-Brain Barrier,” Therapeutic Delivery, Vol. 1, No. 4, 2010, pp. 571-586. doi:10.4155/tde.10.35
[81] M. F. Bennewitz and W. M. Saltzman, “Nanotechnology for Delivery of Drugs to the Brain for Epilepsy,” Neurotherapeutics, Vol. 6, No. 2, 2009, pp. 323-336. doi:10.1016/j.nurt.2009.01.018
[82] J. Park, P. M. Fong, J. Lu, K. S. Russell and C. J. Booth, “PEGylated PLGA Nanoparticles for the Improved Delivery of Doxorubicin,” Nanomedicine, Vol. 5, No. 4, 2009, pp. 410-418. doi:10.1016/j.nano.2009.02.002
[83] P. J. Gaillard, “Crossing Barriers from Blood-to-Brain and Academia-to-Industry,” Therapeutic Delivery, Vol. 1, No. 4, 2010, pp. 495-500. doi:10.4155/tde.10.43
[84] M. Habgood and J. Ek, “Delivering Drugs into the Brain: Barriers and Possibilities,” Therapeutic Delivery, Vol. 1, No. 4, 2010, pp. 483-488. doi:10.4155/tde.10.58
[85] E. Garcia-Garcia, K. Andrieux, S. Gil and P. Couvreur, “Colloidal Carriers and Blood-Brain Barrier (BBB) Translocation: A Way to Deliver Drugs to the Brain?” International Journal of Pharmaceutics, Vol. 298, No. 2, 2005, pp. 274-292. doi:10.1016/j.ijpharm.2005.03.031
[86] D. Chen, W. Liu, Y. Shen, H. Mu and Y. Zhang, “Effects of a Novel pH-Sensitive Liposome with Cleavable Esterase-Catalyzed and pH-Responsive Double Smart mPEG Lipid Derivative on ABC Phenomenon,” International Journal of Nanomedicine, Vol. 6, 2011, pp. 2053- 2061.
[87] D. Shenoy, S. Little, R. Langer and M. Amiji, “Poly(ethylene oxide)-Modified Poly(beta-amino ester) Nanoparticles as a pH-SENSITIVE system for Tumor-Targeted Delivery of Hydrophobic Drugs: Part 2. In Vivo Distribution and Tumor Localization Studies,” Pharmaceutical Research, Vol. 22, No. 12, 2005, pp. 2107-2114. doi:10.1007/s11095-005-8343-0
[88] B. C. Tang, M. Dawson, S. K. Lai, Y. Y. Wang and J. S. Suk, “Biodegradable Polymer Nanoparticles That Rapidly Penetrate the Human Mucus Barrier,” Proceedings of the National Academy of Sciences, Vol. 106, No. 46, 2009, pp. 19268-19273. doi:10.1073/pnas.0905998106
[89] R. Yang, W. S. Shim, F. D. Cui, G. Cheng and X. Han, “Enhanced Electrostatic Interaction between Chitosan- Modified PLGA Nanoparticle and Tumor,” International Journal of Pharmaceutics, Vol. 371, No. 1-2, 2009, pp. 142-147. doi:10.1016/j.ijpharm.2008.12.007
[90] T. Dos Santos, J. Varela, I. Lynch, A. Salvati and K. A. Dawson, “Effects of Transport Inhibitors on the Cellular Uptake of Carboxylated Polystyrene Nanoparticles in Different Cell Lines,” PLoS One, Vol. 6, No. 9, 2011, p. e24438. doi:10.1371/journal.pone.0024438
[91] A. S. Hasan, M. Socha, A. Lamprecht, F. E. Ghazouani and A. Sapin, “Effect of the Microencapsulation of Nano-particles on the Reduction of Burst Release,” International Journal of Pharmaceutics, Vol. 344, No. 1-2, 2007, pp. 53-61. doi:10.1016/j.ijpharm.2007.05.066
[92] S. S. Feng, G. Ruan and Q. T. Li, “Fabrication and Characterizations of a Novel Drug Delivery Device Liposomes-in-Microsphere (LIM),” Biomaterials, Vol. 25, No. 21, 2004, pp. 5181-5189. doi:10.1016/j.biomaterials.2003.12.013
[93] R. K. Das, N. Kasoju and U. Bora, “Encapsulation of Curcumin in Alginate-Chitosan-Pluronic Composite Nanoparticles for Delivery to Cancer Cells,” Nanomedicine, Vol. 6, No. 1, 2010, pp. 153-160. doi:10.1016/j.nano.2009.05.009
[94] A. S. Hassan, “Prolonged Release Microparticles Able to Reduce the Initial Burst Effect,” Ph.D. Thesis, Universite Henri Poincare, Nancy 1, 2008.
[95] T. Hammady, A. El-Gindy, E. Lejmi, R. S. Dhanikula and P. Moreau, “Characteristics and Properties of Nanospheres Co-Loaded with Lipophilic and Hydrophilic Drug Models,” International Journal of Pharmaceutics, Vol. 369, No. 1-2, 2009, pp. 185-195. doi:10.1016/j.ijpharm.2008.10.034
[96] A. Budhian, S. J. Siegel and K. I. Winey, “Controlling the in Vitro Release Profiles for a System of Haloperidol- Loaded PLGA Nanoparticles,” International Journal of Pharmaceutics, Vol. 346, No. 1-2, 2008, pp. 151-159. doi:10.1016/j.ijpharm.2007.06.011
[97] R. M. Mainardes and R. C. Evangelista, “PLGA Nanoparticles Containing Praziquantel: Effect of Formulation Variables on Size Distribution,” International Journal of Pharmaceutics, Vol. 290, No. 1-2, 2005, pp. 137-144. doi:10.1016/j.ijpharm.2004.11.027
[98] X. Song, Y. Zhao, W. Wu, Y. Bi and Z. Cai, “PLGA Nanoparticles Simultaneously Loaded with Vincristine Sulfate and Verapamil Hydrochloride: Systematic Study of Particle Size and Drug Entrapment Efficiency,” International Journal of Pharmaceutics, Vol. 350, No. 1-2, 2008, pp. 320-329. doi:10.1016/j.ijpharm.2007.08.034
[99] W. Ke, Y. Zhao, R. Huang, C. Jiang and Y. Pei, “Enhanced Oral Bioavailability of Doxorubicin in a Dendrimer Drug Delivery System,” Journal of Pharmaceutical Sciences, Vol. 97, No. 6, 2008, pp. 2208-2216. doi:10.1002/jps.21155
[100] W. A. Banks and A. J. Kastin, “Aluminum Alters the Permeability of the Blood-Brain Barrier to Some Non-Peptides,” Neuropharmacology, Vol. 24, No. 5, 1985, pp. 407-412. doi:10.1016/0028-3908(85)90025-5
[101] P. Vlieghe and M. Khrestchatisky, “Peptide-Based Vectors for Blood-Brain Barrier Targeting and Delivery of Drugs to the Central Nervous System,” Therapeutic Delivery, Vol. 1, No. 4, 2010, pp. 489-494. doi:10.4155/tde.10.44
[102] B. Wilson, “Brain Targeting PBCA Nanoparticles and the Blood-Brain Barrier,” Nanomedicine, Vol. 4, No. 5, 2009, pp. 499-502. doi:10.2217/nnm.09.29
[103] V. Mangas-Sanjuan, M. González-Alvarez, I. Gonzalez- Alvarez and M. Bermejo, “Drug penetration across the Blood-Brain Barrier: An Overview,” Therapeutic Delivery, Vol. 1, No. 4, 2010, pp. 535-562. doi:10.4155/tde.10.37
[104] A. Misra, S. Ganesh, A. Shahiwala and S. P. Shah, “Drug Delivery to the Central Nervous System: A Review,” Journal of Pharmaceutical Sciences, Vol. 6, No. 2, 2003, pp. 252-273.
[105] S. J. Gray, K. T. Woodard and R. J. Samulski, “Viral Vectors and Delivery Strategies for CNS Gene Therapy,” Therapeutic Delivery, Vol. 1, No. 4, 2010, pp. 517-534. doi:10.4155/tde.10.50
[106] R. N. Alyautdin, V. E. Petrov, K. Langer, A. Berthold and D. A. Kharkevich, “Delivery of Loperamide across the Blood-Brain Barrier with Polysorbate 80-Coated Polybutylcyanoacrylate Nanoparticles,” Pharmaceutical Research, Vol. 14, No. 3, 1997, pp. 325-328. doi:10.1023/A:1012098005098
[107] J. Kreuter, D. Shamenkov, V. Petrov, P. Ramge and K. Cychutek, “Apolipoprotein-Mediated Transport of Nanoparticle-Bound Drugs across the Blood-Brain Barrier,” Journal of Drug Targeting, Vol. 10, No. 4, 2002, pp. 317-325. doi:10.1080/10611860290031877
[108] J. Kreuter and S. Gelperina, “Use of Nanoparticles for Cerebral Cancer,” Tumori, Vol. 94, No. 2008, pp. 270- 276.
[109] F. C. Thomas, K. Taskar, V. Rudraraju, S. Goda and H. R. Thorsheim, “Uptake of ANG1005, a Novel Paclitaxel Derivative, through the Blood-Brain Barrier into Brain and Experimental Brain Metastases of Breast Cancer,” Pharmaceutical Research, Vol. 26, No. 11, 2009, pp. 2486-2494. doi:10.1007/s11095-009-9964-5
[110] S. Bhaskar, F. Tian, T. Stoeger, W. Kreyling and J. M. de la Fuente, “Multifunctional Nanocarriers for Diagnostics, Drug Delivery and Targeted Treatment across Blood- Brain Barrier: Perspectives on Tracking and Neuroimaging,” Particle and Fibre Toxicology, Vol. 7, 2010, p. 3. doi:10.1186/1743-8977-7-3
[111] H. Xin, X. Jiang, J. Gu, X. Sha and L. Chen, “Angiopep- Conjugated Poly(ethylene glycol)-co-poly(epsilon-capro- lactone) Nanoparticles as Dual-Targeting Drug Delivery System for Brain Glioma,” Biomaterials, Vol. 32, No. 18, 2011, pp. 4293-4305. doi:10.1016/j.biomaterials.2011.02.044
[112] EMA, “Glutathione-Pegylated Liposomal Doxorubicin Hydrochloride for the Treatment of Glioma,” 2010. http://www.ema.europa.eu/docs/en_GB/document_library/Orphan_designation/2010/10/WC500097951.pdf
[113] H.-L. Zhang, S.-H. Wu, Y. Tao, L.-Q. Zang and Z.-Q. Su, “Preparation and Characterization of Water-Soluble Chitosan Nanoparticles as Protein Delivery System,” Journal of Nanomaterials, Vol. 2010, 2010, Article ID 898910, 5 Pages.
[114] M. Garinot, V. Fievez, V. Pourcelle, F. Stoffelbach and A. des Rieux, “PEGylated PLGA-Based Nanoparticles Targeting M Cells for Oral Vaccination,” Journal of Controlled Release, Vol. 120, No. 3, 2007, pp. 195-204. doi:10.1016/j.jconrel.2007.04.021
[115] V. Fievez, L. Plapied, A. des Rieux, V. Pourcelle and H. Freichels, “Targeting Nanoparticles to M Cells with Non- Peptidic Ligands for Oral Vaccination,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 73, No. 1, 2009, pp. 16-24. doi:10.1016/j.ejpb.2009.04.009
[116] Y. Pan, Y. J. Li, H. Y. Zhao, J. M. Zheng and H. Xu, “Bioadhesive Polysaccharide in Protein Delivery System: Chitosan Nanoparticles Improve the Intestinal Absorption of Insulin in Vivo,” International Journal of Pharmaceutics, Vol. 249, No. 1-2, 2002, pp. 139-147. doi:10.1016/S0378-5173(02)00486-6
[117] W. S. Shalaby, “Development of Oral Vaccines to Stimulate Mucosal and Systemic Immunity: Barriers and Novel Strategies,” Clinical Immunology and Immunopathology, Vol. 74, No. 2, 1995, pp. 127-134. doi:10.1006/clin.1995.1019
[118] C. O. Tacket, M. B. Sztein, S. S. Wasserman, G. Losonsky and K. L. Kotloff, “Phase 2 Clinical Trial of Attenuated Salmonella Enterica Serovar Typhi Oral Live Vector Vaccine CVD 908-htrA in U.S. Volunteers,” Infection and Immunity, Vol. 68, No. 3, 2000, pp. 1196-1201. doi:10.1128/IAI.68.3.1196-1201.2000
[119] G. P. Li, Z. G. Liu, B. Liao and N. S. Zhong, “Induction of Th1-Type Immune Response by Chitosan Nanoparticles Containing Plasmid DNA Encoding House Dust Mite Allergen Der p 2 for Oral Vaccination in Mice,” Cellular & Molecular Immunology, Vol. 6, No. 1, 2009, pp. 45-50. doi:10.1038/cmi.2009.6
[120] I. S. Kim, S. K. Lee, Y. M. Park, Y. B. Lee and S. C. Shin, “Physicochemical Characterization of Poly(L-lactic acid) and Poly(D,L-lactide-co-glycolide) Nanoparticles with Polyethylenimine as Gene Delivery Carrier,” International Journal of Pharmaceutics, Vol. 298, No. 1, 2005, pp. 255-262. doi:10.1016/j.ijpharm.2005.04.017
[121] ANGELINI, “EPAXAL?—Vaccine for Active Immunisation against Hepatitis A,” 2011. http://www.angelini.it/public/schedepharma/epaxal.htm
[122] PEVION, “Virosomes Are the Only VLP Assembled in Vitro, Not by Host Cell,” http://www.pevion.com/index.php?page=723
[123] M. R. Kumar, U. Bakowsky and C. M. Lehr, “Preparation and Characterization of Cationic PLGA Nanospheres as DNA Carriers,” Biomaterials, Vol. 25, No. 10, 2004, pp. 1771-1777. doi:10.1016/j.biomaterials.2003.08.069
[124] Y. Yue, F. Jin, R. Deng, J. Cai and Z. Dai, “Revisit Complexation between DNA and Polyethylenimine—Effect of Length of Free Polycationic Chains on Gene Transfection,” Journal of Controlled Release, Vol. 152, No. 1, 2011, pp. 143-151. doi:10.1016/j.jconrel.2011.03.020
[125] J. L. Italia, A. Sharp, K. C. Carter, P. Warn and M. N. V. R. Kumar, “Peroral Amphotericin B Polymer Nanoparticles Lead to Comparable or Superior in Vivo Antifungal Activity to That of Intravenous AmbisomeH or FungizoneTM,” PLoS One, Vol. 6, No. 10, 2011, p. 8. doi:10.1371/journal.pone.0025744
[126] R. Rupp, S. L. Rosenthal and L. R. Stanberry, “VivaGel (SPL7013 Gel): A Candidate Dendrimer—Microbicide for the Prevention of HIV and HSV Infection,” International Journal of Nanomedicine, Vol. 2, No. 4, 2007, pp. 561-566.
[127] C. S. Maia, W. Mehnert and M. Sch?fer-Korting, “Solid lipid Nanoparticles as Drug Carriers for Topical Glucocorticoids,” International Journal of Pharmaceutics, Vol. 196, No. 2, 2000, pp. 165-167. doi:10.1016/S0378-5173(99)00413-5
[128] H. Chen, X. Chang, D. Du, W. Liu and J. Liu, “Podophyllotoxin-Loaded Solid Lipid Nanoparticles for Epidermal Targeting,” Journal of Controlled Release, Vol. 110, No. 2, 2006, pp. 296-306. doi:10.1016/j.jconrel.2005.09.052
[129] M. Rother, E. J. Seidel, P. M. Clarkson, S. Mazgareanu and U. Vierl, “Efficacy of Epicutaneous Diractin (ketoprofen in Transfersome gel) for the Treatment of Pain Related to Eccentric Muscle Contractions,” Journal of Drug Design, Development and Therapy, Vol. 3, No. 2009, pp. 143-149.
[130] A. Rolland, N. Wagner, A. Chatelus, B. Shroot and H. Schaefer, “Site-Specific Drug Delivery to Pilosebaceous Structures Using Polymeric Microspheres,” Pharmaceutical Research, Vol. 10, No. 12, 1993, pp. 1738-1744. doi:10.1023/A:1018922114398
[131] B. Mahe, A. Vogt, C. Liard, D. Duffy and V. Abadie, “Nanoparticle-Based Targeting of Vaccine Compounds to Skin Antigen-Presenting Cells by Hair Follicles and Their Transport in Mice,” Journal of Investigative Dermatology, Vol. 129, No. 5, 2009, pp. 1156-1164. doi:10.1038/jid.2008.356
[132] A. Vogt, B. Combadiere, S. Hadam, K. M. Stieler and J. Lademann, “40 nm, but not 750 or 1500 nm, Nanoparticles Enter Epidermal CD1a+ Cells after Transcutaneous Application on Human Skin,” Journal of Investigative Dermatology, Vol. 126, No. 6, 2006, pp. 1316-1322. doi:10.1038/sj.jid.5700226
[133] F. F. Larese, F. D'Agostin, M. Crosera, G. Adami and N. Renzi, “Human Skin Penetration of Silver Nanoparticles through Intact and Damaged Skin,” Toxicology, Vol. 255, No. 1-2, 2009, pp. 33-37. doi:10.1016/j.tox.2008.09.025
[134] H. Maeda, J. Wu, T. Sawa, Y. Matsumura and K. Hori, “Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review,” Journal of Controlled Release, Vol. 65, No. 1-2, 2000, pp. 271-284. doi:10.1016/S0168-3659(99)00248-5
[135] H. Sarin, “Recent Progress towards Development of Effective Systemic Chemotherapy for the Treatment of Malignant Brain Tumors,” Journal of Translational Medicine, Vol. 7, 2009, p. 77. doi:10.1186/1479-5876-7-77

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.