Effects of structural modification of anti-inflammatory steroidal antedrug on pro-inflammatory mediators and inhibitory cytokines in human alveolar epithelial cells
Gui-Fang Wang, Soonjo Kwon, Rakesh Sharma, Hemang Patel, Henry J. Lee
.
DOI: 10.4236/health.2009.13021   PDF    HTML     4,551 Downloads   8,947 Views   Citations

Abstract

The anti-inflammatory effects of the new ster-oidal antedrug, 21-acetyloxy-9α-fluoro-11β-hy-droxyl-3, 20-dioxo-1, 4-pregnadieno-[16α, 17α-d] isoxazoline (FP-ISO-21AC), on nitric oxide (NO) and interleukin 8 (IL-8) production, were inves-tigated together with its parent steroid predni-solone (PRED). PRED is one of the anti-in-flammatory steroids but has systemic side ef-fects which limit the use of it. PRED was modi-fied with ‘antedrug concept’ to create safer drugs that attack problems such as inflamma-tion, then quickly become inactive before they can cause systemic side effect. We had a test about the effect of the modified anti-inflamma-tory steroidal antedrug on anti-inflammatory activity. The present study evaluated their ability to inhibit cytokine-induced NO and IL-8 produc-tion in human alveolar epithelial cells. We also investigated their ability to enhance the expres-sion of inhibitory cytokine receptor, interleukin 22 receptor (IL-22R) in human alveolar epithelial cells. Our results showed that FP-ISO-21AC sh- owed higher ability to inhibit the cytokine - in-duced production of NO than PRED. Exogenous IL-22 was added to the media of both human alveolar epithelial cells (A549) and human lung fibroblast (HLF-1). In the presence of the ex-ogenous inhibitory cytokine IL-22, further re-duction of NO production was observed in A549 cells, which express IL-22R, but not in HLF1, which does not express IL-22R. These data suggested that the steroidal antedrugs en-hanced the expression of IL-22R. FP-ISO- 21AC showed higher potency than PRED to restore the expression of IL-22R. FP-ISO-21AC further reduced NO production to 27% and PRED further reduced NO production to 39%. In con-clusion, a synthesized steroidal antedrug FP- ISO-21AC showed higher anti-inflammatory ef-fects than PRED by inhibiting the expression of pro-inflammatory mediator NO and stimulating the expression of IL-22R.

Share and Cite:

Wang, G. , Kwon, S. , Sharma, R. , Patel, H. and J. Lee, H. (2009) Effects of structural modification of anti-inflammatory steroidal antedrug on pro-inflammatory mediators and inhibitory cytokines in human alveolar epithelial cells. Health, 1, 127-133. doi: 10.4236/health.2009.13021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. T. Boumpas, G. P. Chrousos, R. L. Wilder, T. R. Cupps, J. E. Balow, (1993) Glucocorticoid therapy for immune- mediated diseases - basic and clinical correlates, Annals of Internal Medicine, 119, 1198-1208.
[2] J. W. Funder, (1997) Glucocorticoid and mineralocorti-coid receptors: biology and clinical relevance, Annual Review of Medicine, 48, 231-240.
[3] H. M. Reichardt, G. Schutz, (1998) Glucocorticoid sig-nalling - multiple variations of a common theme, Mo-lecular and Cellular Endocrinology, 146, 1-6.
[4] L.I. McKay, JA. Cidlowski, (1999) Molecular control of immune/inflammatory responses: Interactions between nuclear factor-kappa B and steroid receptor-signaling pathways, Endocrine Reviews, 20, 435-459.
[5] L. A. Wolfraim, (2006) Treating autoimmune diseases through restoration of antigen-specific immune tolerance, Archivum Immunologiae Et Therapiae Experimentalis, 54, 1-13.
[6] H. Schacke, W. D. Docke, K. Asadullah, (2002) Mecha-nisms involved in the side effects of glucocorticoids, Pharmacology & Therapeutics, 96, 23-43.
[7] E. Garbe, J. LeLorier, J. F. Boivin, S. Suissa, (1997) Risk of ocular hypertension or open-angle glaucoma in elderly patients on oral glucocorticoids, Lancet, 350, 979-982.
[8] P. B. Jacobson, T. W. von Geldern, L. Ohman, M. Oster-land, J. H. Wang, B. Zinker, D. Wilcox, PT. Nguyen, A. Mika, S. Fung, T. Fey, A. Goos-Nilsson, M. Grynfarb, T. Barkhem, K. Marsh, D. W. A. Beno, B. Nga-Nguyen, P. R. Kym, J. T. Link, N. Tu, DS. Edgerton, A. Cherrington, S. Efendic, B. C. Lane, T. J. Opgenorth, (2005) Hepatic glucocorticoid receptor antagonism is sufficient to reduce elevated hepatic glucose output and improve glucose control in animal models of type 2 diabetes, Journal of Pharmacolog
[9] J. Nishimura, S. Ikuyama, (2000) Glucocorticoid-Induced osteoporosis: pathogenesis and management, Journal of Bone and Mineral Metabolism, 18, 350-352.
[10] H. J. Lee, MRI. Soliman, (1982) Anti-Inflammatory ster-oids without pituitary-adrenal suppression, Science, 215, 989-991.
[11] H. J. Lee, M. A. Khalil, J. W. Lee, (1984) Antedrug - a conceptual basis for safer anti-inflammatory steroids, Drugs under Experimental and Clinical Research, 10, 835-844.
[12] H. J. Lee, R. Trottier, (1980) Antiinflammatory activity of two novel derivatives of prednisolone, Res Commun Chem Pathol Pharmacol, 27, 611-4.
[13] H. Ueno, A. Maruyama, M. Miyake, E. Nakao, K. Nakao, K. Umezu, I. Nitta, (1991) Synthesis and evaluation of antiinflammatory activities of a series of corticosteroid 17-Alpha-Esters containing a Functional-Group, Journal of Medicinal Chemistry, 34, 2468-2473.
[14] K. K. Park, D. H. Ko, Z. You, M. O. F. Khan, H. J. Lee, (2006) In vitro anti-inflammatory activities of new ster-oidal antedrugs: [16 alpha, 17 alpha-d] isoxazoline and [16 alpha, 17 alpha-d]-3'-hydroxy-iminoformyl isoxazo- line derivatives of prednisolone and 9 alpha - fluoropred-nisolone, Steroids, 71, 183-188.
[15] H. A. Whittington, L. Armstrong, K. M. Uppington, A.B. Millar, (2004Interleukin-22 - A potential immunomodu-latory molecule in the lung, American Journal of Respi-ratory Cell and Molecular Biology, 31, 220-226.
[16] B. M. Necela, J. A.Cidlowski, (2003) Crystallization of the human glucocorticoid receptor ligand binding domain: a step towards selective glucocorticoids, Trends in Phar-macological Sciences, 24, 58-61.
[17] M. A. Khalil, M. F. Maponya, D. H. Ko, Z. Q. You, E. T. Oriaku, H. J. Lee, (1996) New anti-inflammatory steroids: [16 alpha, 17 alpha-d] isoxazoline derivatives of predni-solone and 9 alpha-fluoroprednisolone, Medicinal Chem-istry Research, 6, 52-60.
[18] D. H. Ko, M. F. Maponya, M. A. Khalil, E. T. Oriaku, Z. Q. You, H. J. Lee, (1997) New anti-inflammatory ster-oids: [16 alpha, 17 alpha-d] -3'-hydroxyiminoformyl isoxazoline derivatives of prednisolone and 9 apha- flu ro-prednisolone. Medicinal Chemistry Research, 7, 313-323.
[19] T. Kwon, A. S. Heiman, E. T. Oriaku, K. Yoon, H. J. Lee (1995) New steroidal antiinflammatory antedrugs - ster-oidal [16- Alpha,17-Alpha-D]-3'-Carbethoxyisoxazolines. Journal of Medicinal Chemistry, 38, 1048-1051.
[20] [JA. Elias, Z. Zhu, G. Chupp, RJ. Homer, (1999) Airway remodeling in asthma, Journal of Clinical Investigation; 104, 1001-1006.
[21] J. Elias, (1999) Inspirations on asthma, Journal of Clini-cal Investigation, 104, 827-827.
[22] N. K. Worrall, T. P. Misko, P. M. Sullivan, J. J. Hui, C. P. Rodi, T. B. Ferguson, (1996) Corticosteroids inhibit ex-pression of inducible nitric oxide synthase during acute cardiac allograft rejection, Transplantation, 61, 324-328.
[23] K. Nyhlen, M. Linden, R. Andersson, S. Uppugunduri, (2000) Corticosteroids and interferons inhibit cyto-kine-induced production of IL-8 by human endothelial cells, Cytokine, 12, 355-360.
[24] B. Wallwork, W. Coman, F. Feron, A. Mackay-Sim, A. Cervin, (2002) Clarithromycin and prednisolone inhibit cytokine production in chronic rhinosinusitis, Laryngo-scope, 112, 1827-1830.
[25] M. John, S. Lim, J. Seybold, P. Jose, A. Robichaud, B. O'Connor, P. J. Barnes, K. F. Chung, (1998) Inhaled cor-ticosteroids increase interleukin-10 but reduce macrophage inflammatory protein-1 alpha, granulocyte-macrophage colony-stimulating factor, and interferon-gamma release from alveolar macrophages in asthma, American Journal of Respiratory and Critical Care Medicine, 157, 256-262.
[26] L. Dumoutier, J. Louahed, J. C. Renauld, Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF): a novel cytokine structurally related to IL-10 and inducible by IL-9, Journal of Immunology l2000, 164, 1814-1819.
[27] W. Y. Almawi, H. N. Beyhum, A. A. Rahme, M. J. Rieder, (1996) Regulation of cytokine and cytokine receptor ex-pression by glucocorticoids, Journal of Leukocyte Biol-ogy,60, 563-572.
[28] G. J. Wiegers, J. M. H. M. Reul, (1998) Induction of cytokine receptors by glucocorticoids: functional and pathological significance, Trends in Pharmacological Sciences, 19, 317-321.
[29] T. Akahoshi, J. J. Oppenheim, K. Matsushima, (1988) Induction of high-affinity Interleukin-1 receptor on hu-man peripheral-blood lymphocytes by glucocorticoid hormones, Journal of Experimental Medicine, 167, 924- 936.
[30] P. E. Gottschall, K. Koves, K. Mizuno, I. Tatsuno, A. Arimura, (1991) Glucocorticoid up-regulation of Inter-leukin-1 receptor expression in a glioblastoma Cell-Line,. American Journal of Physiology, 261, E362-E368.
[31] G. J. Wiegers, M. S. Labeur, I. E. M. Stec, W. E. F. Klinkert, F. Holsboer, J. M. H. M. Reul, (1995) Gluco-corticoids accelerate anti-T cell receptor-induced T-cell growth, Journal of Immunology, 155, 1893-1902.
[32] R. L. K. Paterson, R. Or, J. M. Domenico, G. Delespesse, E. W. Gelfand, (1994) Regulation of Cd23 expression by Il-4 and corticosteroid in human B-lymphocytes - altered response after Ebv infection, Journal of Immunology, 152, 2139-2147.
[33] L. Snyers, L. Dewit, J. Content, (1990) Glucocorticoid up-regulation of high-affinity Interleukin-6 receptors on human Epithelial-Cells, Proceedings of the National Academy of Sciences of the United States of America, 87, 2838-2842.
[34] S. P. Campos, Y. P. Wang, A. Koj, H. Baumann, (1993) Divergent transforming Growth-Factor-Beta effects on Il-6 regulation of Acute-Phase Plasma-Proteins in Rat Hepatoma-Cells, Journal of Immunology, 151, 7128-7137.
[35] R. W. Strickland, L. M. Wahl, D. S. Finbloom, (1986) Corticosteroids enhance the binding of recombinant in-terferon-gamma to cultured human-monocytes, Journal of Immunology, 137, 1577-1580.
[36] C. M. Hawrylowicz, L. Guida, E. Paleolog, (1994) Dex-amethasone up-regulates granulocyte-macrophage colony - stimulating ractor-receptor expression on human mono-cytes, Immunology, 83, 274-280.
[37] P. J. Barnes, S. Lim, (1998) Inhibitory cytokines in asthma, Molecular Medicine Today, 4, 452-458.
[38] D. Kunz, G. Walker, W. Eberhardt, J. Pfeilschifter, (1996) Molecular mechanisms of dexamethasone inhibition of nitric oxide synthase expression in interleukin 1 beta- stimulated mesangial cells: evidence for the involvement of transcriptional and posttranscriptional regulation, Proceedings of the National Academy of Sciences of the United States of America, 93, 255-259.
[39] D. A. Geller, A. K. Nussler, M. Disilvio, C. J. Lowenstein, R. A. Shapiro, S. C. Wang, R. L. Simmons, T. R. Billiar, (1993) Cytokines, endotoxin, and glucocorticoids regu-late the expression of inducible Nitric-Oxide synthase in hepatocytes, Proceedings of the National Academy of Sciences of the United States of America, 90, 522-526.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.