Allelic Relationship between Lr9 and the Leaf Rust Resistance Gene in Kharchia Local Mutant of Wheat
Navjot Kaur Dhillon, Harcharan Singh Dhaliwal
.
DOI: 10.4236/ajps.2011.25083   PDF    HTML     4,103 Downloads   7,313 Views   Citations

Abstract

To confirm allelic relationship between Lr9 and the leaf rust resistance gene in KLM4-3B, genetics of resistance was studied using crosses (WL711 + Lr9) × WL711 and (WL711 + LrKLM4-3B) × WL711. The F2 populations in cross (WL711 + Lr9) × WL711 and (WL711 + LrKLM4-3B) × WL711 segregated in ratio of 3:1 for disease reaction at seedling stage against pathotype 77-5 of leaf rust. This suggests that rust resistance in these stocks are under the control of single dominant genes. Further, to study allelic relationship betweenLr 9 and LrKLM4-3B, F2 population of the cross (WL711 + LrKLM4-3B) × (WL711 + Lr9) was studied. A segregation ratio of 15:1 implies that the two genes Lr9 and LrKLM4-3B are non-allelic genes.

Share and Cite:

N. Dhillon and H. Dhaliwal, "Allelic Relationship between Lr9 and the Leaf Rust Resistance Gene in Kharchia Local Mutant of Wheat," American Journal of Plant Sciences, Vol. 2 No. 5, 2011, pp. 688-691. doi: 10.4236/ajps.2011.25083.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. G. Eversmeyer and L. E. Browder, “Effect of Leaf and Stem Rust on 1973 Kansaswheat Yields,” Plant Disease Reporter, Vol. 58, No. 5, 1974, pp. 469-471.
[2] R. G. Saini and A. K. Gupta, “Genes for Resistance to Brown Rust Puccinia recondita) in Wheat. II. Lr Genes in Frontana, WG138 and E6360,” Cereal Research Communications, Vol. 7, 1979, pp. 289-291.
[3] D. Anand, R. G. Saini and A. K. Gupta, “Slow Leaf Rust Development Due to Combination of Some Genes in Wheat,” Plant Disease Reporter, Vol. 3, 1988, p. 97.
[4] M. Seck, A. P. Roelfs and P. S. Teng , “Effect of Leaf Rust Puccinia recondite Triticii on Yield of Four Isogenic Wheat Lines,” Crop Protection, Vol. 7, No. 1, 1988, pp. 39-43. doi:10.1016/0261-2194(88)90036-1
[5] K. V. S. Rao, J. P. Snow and G. T. Berggren, “Effect or Growth Stage and Initial Inoculum Level on Leaf Rust Development and Yield Loss Caused by Puccinia recondita f. sp. tritici,” Journal of Phytopathology, Vol. 127, No. 3, 1989, pp. 200-210. doi:10.1111/j.1439-0434.1989.tb01130.x
[6] R. P. Singh, J. Huerta-Espino, W. Pfeiffer and P. F. Lopez, “Occurrence and Impact of a New Leaf Rust Race on Durum Wheat in Northwestern Mexico from 2001 to 2003,” Plant Disease, Vol. 88, No. 7, 2004, pp. 703-708. doi:10.1094/PDIS.2004.88.7.703
[7] J. A. Appel, E. DeWolf, W. W. Bockus and T. Todd, “Kansas Cooperative Plant Disease Survey Report Preliminary Kansas Wheat Disease Loss Estimates,” August 11, 2009. http:// www.ksda.gov/includes/document center/plant_protection/Plant%20Disease20Reports/2009KSWheatDiseaseLossEstimates.pdf. Accessed 29 November 2010.
[8] G. V. Volkova, T. P. Alekseeva, L. K. Anpilogova, M. V. Dobryanskaya, O. F. Vaganova and D. A. Kol’bin, “Phytopathological Characteristics of Leaf Rust Resistance of New Winter Wheat Varieties,” Russian Agricultural Sciences, Vol. 35, No. 3, 2009, pp. 168-171. doi:10.3103/S1068367409030112
[9] A. Vjyushkov, P. Malchikov and V. Syukov, “Breeding Genetic Improvement of Spring Wheat,” Samara Agric Research Institute, Samara, 2008, p. 546.
[10] C. J. T. Spitters, H. J. W. Van Roermund, H. G. M. G. Van Nassau, J. Sohapur and J. Mesdag, “Genetic Variation in Partial Resistance to Leaf Rust in Winter Wheat. Disease Progress, Foliage Senescence and Yield Reduction,” Biomedical and Life Sciences, Vol. 96, No. 1, 1990, pp. 3-15. doi:10.1007/BF01976602
[11] J. H. Espino, R. P. Singh, S. Germa’n, B. D. McCallum, R. F. Park, Q. W. S. Chen, C. Bhardwaj and H. Goyeau, “Global Status of Wheat Leaf Rust Caused by Puccinia triticina,” Euphytica, Vol. 179, No. 1, 2011, pp. 143-160. doi:10.1007/s10681-011-0361-x
[12] I. Lowe, D. Cantu and J. Dubcovsky, “Durable Resistance to the Wheat Rusts: Integrating Systems Biology and Traditional Phenotype-Based Research Methods to Guide the Deployment of Resistance Genes,” Euphytica, Vol. 179, No. 1, 2011, pp. 69-79. doi:10.1007/s10681-010-0311-z
[13] L. Huang, L. Q. Zhang, B. L. Liu, Z. H. Yan, B. Zhang, H. G. Y. L Zhang and D. C. Liu, “Molecular Tagging of a Stripe Rust Resistance Gene in Aegilops Tauschii,” Euphytica, Vol. 179, No. 2, 2011, pp. 313-318. doi:10.1007/s10681-010-0330-9
[14] M. Baum, E. S. Laguadah and R. Appels, “Wide Crosses in Cereals,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 43, 1992, pp. 117-143. doi:10.1146/annurev.pp.43.060192.001001
[15] Z. A. Pretorius and C. M. Bender, “First Report of Virulence for the Wheat Leaf Rust (Puccinia triticina) Resistance Gene Lr32 in South Africa,” Plant Disease, Vol. 94, No. 3, 2010, pp. 381. doi:10.1094/PDIS-94-3-0381A
[16] S. C. Bhardwaj, M. Prashar, S. K. Jain, S. Kumar, Y. P. Sharma, “Physiologic Specialization of Puccinia Triticina on Wheat (Triticum Species) in India,” Indian Journal of Agricultural Sciences, Vol. 80, 2010, pp. 805-881.
[17] E. R. Sears, “The Transfer of Leaf Rust Resistance from Aegilops umbellulata into Wheat,” Brookhaven Symposia in Biology, Vol. 9, 1956, pp. 1-21.
[18] A. S. Soliman, E. Y. Heyne and C. O. Johnston, “Resistance to Leaf Rust in Wheat Derived from Chinese Aegilops umbellulata Translocation Lines,” Crop Science, Vol. 3, 1963, pp. 254-256. doi:10.2135/cropsci1963.0011183X000300030025x
[19] S. Harjit, H. S. Dhaliwal and K. S. Gill, “A New Leaf Rust Resistance Gene other than Lr9 in Kharchia Local Mutant KLM4-3B,” Ann Wheat Newsl, Colorado State Univ, Vol. 40, pp. 145-46.
[20] K. M. Devos, T. Millan and M. D. Gale, “Comparative RFLP Maps of the Homoeologous Group-2 Chromosomes of Wheat, Rye and Barley,” Theoretical and Applied Genetics, Vol. 85, No. 6-7, 1993, pp. 784-92. doi:10.1007/BF00225020
[21] F. Sacco, E. Y. Suarez and T. Naranjo, “Mapping of the Leaf Rust Resistance Gene Lr3 on Chromosome 6B of Sinvalocho MA Wheat,” Genome, Vol. 41, No. 5, 1998, pp. 686-690.
[22] M. Mohan, S. Nain, A. T. G. B. Krishna, M. Y. Ano, C. R. Bhatia and T. Saski, “Genome Mapping, Molecular Markers and Marker-Assisted Selection in Crop Plants,” International Crop Science Congress, Working Group on Genome Mapping and Marker Assisted Selection in Plant Breeding, New Delhi, 1996, pp. 999-1018. doi:10.1007/BF00222911
[23] G. Schachermayr, M. Messmer, C. Feuillet, H. Winzeler, M. Winzeler and B. Keller, “Identification of Molecular Markers Linked to the Agropyron Elongatum-Derived Leaf Rust Resistance Gene Lr24 in Wheat,” Theoretical and Applied Genetics, Vol. 90, 1995, pp. 982-990.
[24] E. C. Stakman, D. M. Stewart and W. Q. Loegering, “Identification of Physiological Races of Puccinia graminis var. tritici,” US Department of Agricultural Publications E617. USDA, Washington, DC, 1962.
[25] R. F. Peterson, A. B. Campbell and A. E. Hannah, “A Diagramatic Scale for Estimating Rust Intensity of Leaves and Stem of Cereals,” Canadian Journal of Research, Vol. 26, 1948, pp. 496-500.
[26] R. N. Swahney, S. K. Nayar, S. D. Singh and L. B. Goel, “A New Source of Resistance to Leaf Rust of Wheat,” Plant Disease Reporter, Vol. 63, 1979, pp. 1048-1049.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.