Tornado-like non-stationary vortices: experimental modelling under laboratory conditions
Viktor N. Kopeitsev, Mikhael E. Romash, Aleksei Y. Varaksin
.
DOI: 10.4236/ns.2011.311116   PDF    HTML     12,072 Downloads   28,989 Views   Citations

Abstract

The purposes of the paper are threefold: 1) to show the fundamental possibility of physical simulation of non-stationary wall-free concentrated air vortices (called here as tornado-like vortices) under laboratory conditions without using of the mechanical rotation, 2) to find the heating rates of underlying surface and air temporal and spatial temperature shear which lead to the stable genesis of wall-free vortices, and 3) to investigate the some parameters of the process of generation of vortices and their characteristics. The wall-free vortices were generated over underlying surface of aluminum sheet due to its controlled heating from below as a result of development of unstable stratifycation of air.

Share and Cite:

Kopeitsev, V. , Romash, M. and Varaksin, A. (2011) Tornado-like non-stationary vortices: experimental modelling under laboratory conditions. Natural Science, 3, 907-913. doi: 10.4236/ns.2011.311116.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Holzer, A.M. (2001) Tornado climatology of Austria. Atmospheric Research, 56, 203-211. doi:10.1016/S0169-8095(00)00073-9
[2] Meaden, J.T. (1976) Tornadoes in Britain: Their intensities and distribution in space and time. Journal of Meteorology, 1, 242-251.
[3] Dotzek, N. (2001) Tornadoes in Germany. Atmospheric Research, 56, 233-251. doi:10.1016/S0169-8095(00)00073-9
[4] Gianfreda, F., Miglietta, M.M. and Sanso, P. (2005) Tornadoes in Southern Apulia (Italy). Natural Hazards, 34, 71-89. doi:10.1007/s11069-004-1966-3
[5] Marcinoniene, I. (2003) Tornadoes in Lithuania in the period of 1950-2002 including analysis of the strongest tornado of 29 May 1981. Atmospheric Research, 67, 475- 484. doi:10.1016/S0169-8095(03)00060-7
[6] Niino, H., Fujitani, T. and Watanabe, N. (1997) A statistical study of tornadoes and waterspouts in Japan from 1961 to 1993. Journal of Climate, 10, 1730-1752. doi:10.1175/1520-0442(1997)010<1730:ASSOTA>2.0.CO;2
[7] Ashley, W.S. (2007) Spatial and temporal analysis of tornado fatalities in the United States: 1880-2005. Wea- ther and Forecasting, 22, 1214-1228. doi:10.1175/2007WAF2007004.1
[8] Simmons, K.M. and Sutter, D. (2007) Tornado shelters and the manufactured home parks market. Natural Hazards, 43, 365-378. doi:10.1007/s11069-007-9123-4
[9] Ward, N.B. (1972) The exploration of certain features of tornado dynamics using laboratory model. Journal of the Atmospheric Sciences, 29, 1194-1204. doi:10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2
[10] Akhmetov, D.G. and Nikulin, V.V. (2008) Experimental determination of the time of tornado-like vortex formation in a closed chamber. Technical Physics Letters, 34, 1057-1059. doi:10.1134/S1063785008120201
[11] Van Bokhoven, L.J.A., Clercx, H.J.H., Van Heijst, G.J.F. and Trieling, R.R. (2009) Experiments on rapidly rotating turbulent flows. Physics of Fluids, 21, 096601-1- 096601-20. doi:10.1063/1.3197876
[12] Morize, C., Moisy, F. and Rabaud, M. (2005) Decaying grid-generated turbulence in a rotating tank. Physics of Fluids, 17, 095105-1-095105-11. doi:10.1063/1.2046710
[13] Hopfinger, E.J., Browand, F.K. and Gagne, Y. (1982) Turbulence and waves in a rotating tank. Journal of Fluid Mechanics, 125, 505-534. doi:10.1017/S0022112082003462
[14] Mununga, L., Hourigan, K., Thompson, M.C. and Leweke, T. (2004) Confined flow vortex breakdown control using a small rotating disk. Physics of Fluids, 16, 4750- 4753. doi:10.1063/1.1813061
[15] Tan, B.T., Liow, K.Y.S., Mununga, L., Thompson, M.C. and Hourigan, K. (2009) Simulation of the control of vortex breakdown in a closed cylinder using a small rotating disk. Physics of Fluids, 21, 024104-1-024104-8. doi:10.1063/1.3073747
[16] Yu, P. and Meguid, S.A. (2009) Effects of wavy sidewall on vortex breakdown in an enclosed cylindrical chamber with a rotating end wall. Physics of Fluids, 21, 017104-1- 017104-11. doi:10.1063/1.3072090
[17] Bhattacharyya, S. and Pal, A. (1998) Axisymmetric vortex breakdown in a filled cylinder. International Journal of Engineering Science, 36, 555-563. doi:10.1016/S0020-7225(97)00102-X
[18] Valentine, D.T. and Jahnke, C.C. (1994) Flows induced in a cylinder with both end walls rotating. Physics of Fluids, 6, 2702-2710. doi:10.1063/1.868159
[19] Roesner, K.G. (1990) Recirculating zones in a cylinder with rotating lid. Proceedings of International Union of Theoretical and Applied Mechanics Symposium, Cambridge, 13-18 August 1990.
[20] Husain, H.S., Shtern, V. and Hussain, F. (2003) Control of vortex breakdown by addition of near-axis swirl. Physics of Fluids, 15, 271-279. doi:10.1063/1.1530161
[21] Shtern, V. and Hussain, F. (1993) Hysteresis in a swirling jet as a model tornado. Physics of Fluids, 5, 2183-2195. doi:10.1063/1.858888
[22] Shtern, V., Borissov, A. and Hussain, F. (1997) Vortex- sinks with axial flows: Solution and applications. Physics of Fluids, 9, 2941-2959. doi:10.1063/1.869406
[23] Shtern, V., Hussain, F. and Herrada, M. (2000) New features of swirling jets. Physics of Fluids, 12, 2868-2877. doi:10.1063/1.1313547
[24] Yih, C.-S. (2007) Tornado-like flows. Physics of Fluids, 19, 076601-1-076601-6.
[25] Varaksin, A.Y. (2007) Turbulent particle-laden gas flows. Springer, Berlin. doi:10.1007/978-3-540-68054-3
[26] Sidin, R.S.R., IJzermans, R.H.A. and Reeks, M.W. (2009) A lagrangian approach to droplet condensation in atmospheric clouds. Physics of Fluids, 21, 106603-1- 106603- 16. doi:10.1063/1.3244646

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.