Predictive Modelling of Etching Process of Machinable Glass Ceramics, Boron Nitride, and Silicon Carbide
Huey Tze Ting, Khaled Abou-El-Hossein, Han Bing Chua
.
DOI: 10.4236/msa.2011.211214   PDF    HTML     5,423 Downloads   9,724 Views   Citations

Abstract

The present paper discusses the development of the first and second order model for predicting the chemical etching variables, namely, etching rate, surface roughness and accuracy of advanced ceramics. The first and second order etching rate, surface roughness and accuracy equations were developed using the Response Surface Method (RSM). The etching variables included etching temperature, etching duration, solution and solution concentration. The predictive models’ analyses were supported with the aid of the statistical software package – Design Expert (DE 7). The effects of the individual etching variables and interaction between these variables were also investigated. The study showed that predictive models successfully predicted the etching rate, surface roughness and accuracy readings recorded experimentally with 95% confident interval. The results obtained from the predictive models were also compared with Multilayer Perceptron Artificial Neural Network (ANN). Chemical Etching variables predictive by ANN were in good agreement with those with those obtained by RSM. This observation indicated the potential of ANN in predicting chemical etching variables thus eliminating the need for exhaustive chemical etching in optimization.

Share and Cite:

H. Ting, K. Abou-El-Hossein and H. Chua, "Predictive Modelling of Etching Process of Machinable Glass Ceramics, Boron Nitride, and Silicon Carbide," Materials Sciences and Applications, Vol. 2 No. 11, 2011, pp. 1601-1621. doi: 10.4236/msa.2011.211214.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. P. DeGarmo, J. T. B. R. A. Kohser and B. E. Klamecki, “Materials and Processes in Manufacturing,” 9th Edition, John Wiley & sons, Inc., United States of America, 2003.
[2] J. Y. Thompson, S. C. Bayne and H. O. Heymann, “Me- chanical Properties of a New Mica-Based Machinable Glass Ceramic for CAD/CAM Restorations,” The Journal of Prosthetic Dentistry, Vol. 76, No. 3, 1996, pp. 619-623. doi:10.1016/S0022-3913(96)90440-0
[3] A. Guedes, et al., “Multilayered Interface in Ti/Macor Machinable Glass-Ceramics Joints,” Materials Science and Engineering A, Vol. 301, 2001, pp. 118-124. doi:10.1016/S0921-5093(00)01804-9
[4] A. F. Grogan and D. F. Smart, “Ceramic Surfaces for Tri- bological Components,” Materials and Design, Vol. 2, 1981, pp. 197-201. doi:10.1016/0261-3069(81)90020-0
[5] ASM, “Metals Handbook Machining,” Vol. 16, ASM Int. Pub, 1989.
[6] C. T. Lynch, “CRC Handbook of Materials Science,” 2nd Edition, CRC Press, C.T. Lynch, 1975.
[7] D. M. Allen, “The Principles and Practice of Photo- chemical Machining and Photoetching,” Adam Hil- ger/IOP, UK, 1986.
[8] E. V. Zakka, Constantoudis and E. Gogolides, “Rough- ness Formation during Plasma Etching of Composite Materials: A Kinetic Monte Carlo Approach,” IEEE Transactions of Plasma Science, Vol. 35, No. 5, 2007, pp. 1359-1369. doi:10.1109/TPS.2007.906135
[9] F. Gao, et al., “Changing the Size and Shape of Ge Island by Chemical Etching,” Journal of Crystal Growth, Vol. 231, No. 1-2, 2001, pp. 17-21. doi:10.1016/S0022-0248(01)01357-4
[10] U. Gilabert, A. B. Trigubo and N. E. W. D. Reca, “Chemical Etching of CdZnTe (111) Surfaces,” Materials Science and Engineering B, Vol. 27, No. 2-3, 1994, pp. L11-15. doi:10.1016/0921-5107(94)90138-4
[11] O. Cakir, H. Temel and M. Kiyak, “Chemical Etching of Cu-ETP Copper,” Journal of Materials Processing Tech- nology, Vol. 162-163, 2005, pp. 275-279. doi:10.1016/j.jmatprotec.2005.02.035
[12] S. W. Youn and C. G. K., “Maskless Pattern Fabrication on Pyrex 7740 Glass Surface by Using Nano-Scratch with HF Wet Etching,” Scripta Materialia, Vol. 52, 2005, pp. 117-122. doi:10.1016/j.scriptamat.2004.09.016
[13] Y. Saito, et al., “Mechanism of Etching Rate Change of Aluminosilicate Glass in HF Acid with Micro-Indentation,” Applied Surface Science, Vol. 255, 2008, pp. 2290-2294. doi:10.1016/j.apsusc.2008.07.085
[14] Y. Saito, et al., “Fabrication of Micro-Structure on Glass Surface Using Micro-Indentation and Wet etching Process,” Applied Surface Science, Vol. 254, 2008, pp. 7243-7249. doi:10.1016/j.apsusc.2008.05.320
[15] T. Nagai,.A. Imanishi and Y. Nakato, “Scratch Induced Nano-Wires Acting as a Macro-Pattern fro Formation of Well-Ordered Step Structures on H-Terminated Si (111) by Chemical Etching,” Applied Surface Science, Vol. 237, No. 1-4, 2004, pp. 533-537. doi:10.1016/j.apsusc.2004.06.122
[16] P. G. Benardos and G.-C. Vosniakos, “Predicting Surface Roughness in Machining: A Review,” International Journal of Machine Tools Manufacture, Vol. 43, 2003, pp. 833-844. doi:10.1016/S0890-6955(03)00059-2
[17] N. Prudhomme, et al., “Design of High Frequency GaPO4 BAW Resonators by Chemical Etching,” Sensors and Ac- tuators B, Vol. 131, 2008, pp. 270-278. doi:10.1016/j.snb.2007.11.020
[18] J. Weber, et al., “Hydrogen Penetration into Silicon dur- ing Wet-Chemical Etching,” Microelectronic Engineering, Vol. 66, 2003, pp. 320-326. doi:10.1016/S0167-9317(02)00926-7
[19] C. Lin, et al., “A Fast Phototyping Process for Fabrication of Microfluidic Systems on Soda-Lime Glass,” Journal of Micromechanics and Microengineering, Vol. 11, 2001, pp. 726-732. doi:10.1088/0960-1317/11/6/316
[20] D. C. S. Bien, et al., “Chracterization of Masking Materials for Deep Glass Micromachining,” Journal of Microelectromechanical Systems, Vol. 13, 2003, pp. S34-S40.
[21] J. Zhang, et al., “Polymerization Optimization of SU-8 Photoresist and its Application in Microfluidic Systems and MEMS,” Journal of Micromechanics and Microengineering, Vol. 11, 2001, pp. 20-26. doi:10.1088/0960-1317/11/1/304
[22] T. Corman, P. Enoksson and G. Stemme, “Deep Wet Etching of Borosilicate Glass Using an Anodically Bonded Silicon Substrate as Mask,” Journal of Micromechanics and Microengineering, Vol. 8, 1998.
[23] A. Berthold, P. M. Sarro and M. J. Vellekoop, “Two-Step Glass Wet-Etching for Micro-Fluidic Devices,” Proceedings of the SeSens Workshop, Veldhoven, 2000.
[24] E. Makino, T. Shibata and Y. Yamada, “Micromachin- ing of Fine Ceramics by Photolithography,” Sensors and Actuators A, Vol. 75, 1999, pp. 278-288. doi:10.1016/S0924-4247(98)00353-7
[25] X. Li, T. Abe and M. Esashi, “Fabrication of High-Density Electrical Feed-Throughs by Deep-Reactive-Ion Etching of Pyrex Glass,” Journal of Microelectromechanical Systems, Vol. 1-6, 2002, pp. 625-630.
[26] H. Wensink, et al., “High Resolution Powder Blasting Micromachining,” Proceeding of the 13th Annual Inter- national Conference on Micro Electro Mechanical Sys- tems, Miyazaki, 2000.
[27] Y. S. Liao and L. C. Chen, “A Method of Etching and Powder Blasting for Microholes,” Journal of Materials Processing Technology, 2009.
[28] S. Schlautmann, et al., “Powder-Blasting Technology as an Alternative Tool for Microfabrication of Capilllary Electrophoresis Chips with Integrated Conductivity Sensors,” Journal of Micromechanics and Microengineering, Vol. 11, 2001, pp. 386-389. doi:10.1088/0960-1317/11/4/318
[29] T. Abe, X. Li and M. Esashi, “Endpoint Detectable Plat- ing through Femtosecond Laser Drilled Glass Wafers for Electrical Interconnections,” Sensors and Actuators A, Vol. 108, 2003, pp. 234-238. doi:10.1016/S0924-4247(03)00262-0
[30] C.-W. Chang and C.-P. Kuo, “An Investigation of La- ser-Assisted Machining of Al2O3 Ceramics Planning,” In- ternational Journal of Machine Tools and Manufacture, Vol. 47, 2007, pp. 452-461.
[31] C.-H. Tsai and H.-W. Chen, “Laser Milling of Cavity in Ceramic Substrate by Fracture Machining Element Tech- nique,” Journal of Materials Processing Technology, Vol. 136, 2003, pp. 158-165. doi:10.1016/S0924-0136(03)00133-X
[32] L. Chen, E. Siores and W. C. K. Wong, “Keft Characteristics in Abrasive Water Jet Machining of alumina Ceramics,” International Journal of Machine Tools and Manufacture, Vol. 36, 1996, pp. 1201-1206. doi:10.1016/0890-6955(95)00108-5
[33] Z. J. Pei, et al., “Rotary Ultrasonic Machining for Face Milling of Ceramics,” International Journal of Machine Tools Manufacture, Vol. 35, No. 7, 1995, pp. 1033-1046. doi:10.1016/0890-6955(94)00100-X
[34] I. P. Tuersley, A. Jawaid and I. R. Pashby, “Review: Various Methods of Machining Advanced Ceramics Materials,” Journal of Materials Processing Technology, Vol. 42, 1994, pp. 377-390. doi:10.1016/0924-0136(94)90144-9
[35] T. Watanabe, “Mass Production of Quartz High-Speed Chemical Etching Applied to AT-Cut Wafers,” IEEE International Frequency Control Symposium and PDA Exhibition, 2001, pp. 368-375.
[36] K. R. Williams, K. Gupta and M. Wasilik, “Etch Rates for Micromachining Processing-Part 2,” Journal of Microelectromechanical Systems, Vol. 12, No. 6, 2003, pp. 761-778. doi:10.1109/JMEMS.2003.820936
[37] F. Gaiseanu, et al., “Chemical Etching Control during the Self-Limitation Process by Boron Diffusion in Silicon: Analytical Results,” Proceeding of 1997 IEEE Semiconductor Conference, 1997, pp. 247-250.
[38] Y. Minhao, M. J. Henderson and A. Gibaud, “On the Etching of Silica and Mesoporous Silica Films Determined by X-ray Reflectivity and Atomic Force Microscopy,” Thin Solid Films, Vol. 514, 2009, pp. 3028-3035. doi:10.1016/j.tsf.2008.12.017
[39] M. E. Olsen, et al., “Effect of Varying Etching Times on the Bond Strength of Ceramic Brackets,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 109, No. 4, 1996, pp. 403-409. doi:10.1016/S0889-5406(96)70122-1
[40] D. C. Montgomerty, “Design and Analysis of Experi- ment,” 5th Edition, John Wiley & Sons, Inc., 2001.
[41] M. J. Anderson and P. J. Whitcomb, “RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments,” 2nd Edition, Productivity Press, New York, 2005.
[42] M. J. Anderson and P. J. Whitcomb, “DOE Simplified: Practical Tools for Effective Experimentation,” 2nd Edition, Productivity Press, New York, 2007.
[43] S. Baldassari, et al., “DOE Analyses on Aqueous Suspendsions of TiO2 Nanoparticles,” Journal of European Ceramic Society, Vol. 28, 2008, pp. 2665-2671. doi:10.1016/j.jeurceramsoc.2008.03.044
[44] C. Pierlot, et al., “Design of Experiments in Thermal Spraying: A Review,” Surface and Coatings Technology, Vol. 202, 2008, pp. 4483-4490. doi:10.1016/j.surfcoat.2008.04.031
[45] S. Subramanian, et al., “Modeling and Optimization of the Chemical Etching Process in Niobium Cavities,” International Congress on Advanced Nuclear Power, Hollywood, Florida, 2002.
[46] P. H. Chen, et al., “Application of the Taguchi’s Design of Experients to Optimize a Bromine Chemistry-Based Etching Recipe for Deep Silicon Trenches,” Microelectronic Engineering, Vol. 77, 2005, pp. 110-115. doi:10.1016/j.mee.2004.09.001
[47] M. A. Dabnun, M. S. J. Hashmi and M. A. El-Baradie, “Surface Roughness Predictive Model by Design of Ex- periments for Turning Machinable Glass-Ceramic (Macor),” Journal of Materials Processing Technology, Vol. 164-165, 2005, pp. 1289-1293. doi:10.1016/j.jmatprotec.2005.02.062
[48] M. D. Mathew, D. W. Kim and W.-S. Ryu, “A Neural Network Model to Predict Low Cycle Fatigue Life of Nitrogen-Alloyed 316L Stainless Steel,” Materials Science and Engineering A, Vol. 474, 2008, pp. 247-253. doi:10.1016/j.msea.2007.04.018
[49] M. Smith, “Neural Networks for Statistic Modeling,” Van Nostrand Reinhold, New York, 1993.
[50] T. W. Liao, “Modelling Process Mean and Variation with MLP Neural Networks,” International Journal of Machine Tools Manufacture, Vol. 36, No. 12, 1996, pp. 1307-1319. doi:10.1016/S0890-6955(96)00054-5
[51] K. Hornik, M. Stinchcombe and H. White, “Multilayer Feedforward Networks Neural Networks,” IEEE Transac- tion on Neutral Network, Vol. 2, 1989, pp. 359-366.
[52] K. Funahashi, “On the Approximate Realization of Continuous Mappings by Neural Networks,” Neural networks, Vol. 2, 1989, pp. 183-192. doi:10.1016/0893-6080(89)90003-8
[53] K. Hornik, “Approximation Capabilities of Mulitlayer Feedforward Networks,” Neural networks, Vol. 4, 1991, pp. 251-257. doi:10.1016/0893-6080(91)90009-T
[54] M. Aydinalp-Koksal and V. I. Ugursal, “Comparison of Neural Netwok, Conditional Demand Analysis, and Engi- neering Approaches for Modelling End-Use Energy Con- sumption in the Residential Sector,” Applied Energy, Vol. 85, 2008, pp. 271-296. doi:10.1016/j.apenergy.2006.09.012
[55] J. Cai, et al., “Effects on Etching Rates of Copper in Ferric Chloride Solutions,” IEMT/IMC Proceeding, 1998.
[56] K. R. Williams and R. S. Muller, “Etch Rates for Micro- machining Processing,” Journal of Microelectromechanical Systems, Vol. 5, No. 4, 1996, pp. 256-269. doi:10.1109/84.546406
[57] N. Prudhomme, et al., “Gallium Orthophoshate Device Manufacturing by Chemical Etching,” Proceeding of 2003 IEEE International Frequency Control Symposium and PDA Exhibition, 2003, pp. 688-693.
[58] P. L. Houston, “Chemical Kinetics and Reaction Dynamoics,” 1st Edition, McGraw-Hill, 2001.
[59] C. S. Sundararaman, A. Mouton and J. F. Currie, “Che- mical Etching of InP. Indium Phosphide and Related Ma- terials,” 2nd International Conference Proceeding, 1990, pp. 224-227.
[60] C. B. Vartuli, et al., “Wet Chemical Etching Survey of III-Nitrides. Solid-State Electronics,” Vol. 41, No. 12, 1997, pp. 1947-1954. doi:10.1016/S0038-1101(97)00173-1
[61] A. F. Tehrani and E. Imanian, “A New Etchant for the Chemical Machining of St304,” Journal of Materials Processing Technology, Vol. 149, 2004, pp. 404-408. doi:10.1016/j.jmatprotec.2004.02.055
[62] Y. Hua, “Studies of a New Chemical Etching Method- 152 Secco Etch in Failure Analysis of Wafer Fabrication,” Proceeding in ICSE, 1998, pp. 20-26.
[63] I. Virginia Semiconductor, “Wet-Chemical Etching and Cleaning of Silicon,” Virginia Semicondcutor, Inc: Fred- ericksburg, 2003.
[64] S. G. Cook, J. A. Little and J. E. King, “Etching and Microstructure of Engineering Ceramics,” Materials Characterization, Vol. 34, No. 1, 1995, pp. 1-8. doi:10.1016/1044-5803(94)00044-L
[65] H.-J. Choi, et al., “Sliding Wear of Silicon Carbide Modi- fied by Etching with Chlorine at Various Temperatures,” Wear, Vol. 266, 2009, pp. 214-219. doi:10.1016/j.wear.2008.06.021
[66] T. Jardiel, et al., “Domain Structure of Bi4Ti3O12 Ceram- ics Revealed by Chemical Etching,” Journal of European Ceramic Society, Vol. 26, 2006, pp. 2823-2826. doi:10.1016/j.jeurceramsoc.2005.05.003
[67] O. Cakir, “Chemical Etching of Aluminium,” Journal of Materials Processing Technology, Vol. 199, 2008, pp. 337-340. doi:10.1016/j.jmatprotec.2007.08.012
[68] G. K. Baranova and L. A. Dorosinskii, “Chemical Polish- ing and Etching of Bi-Sr-Ca-Cu-O High Temperature Su- perconduting System,” Physica C, Vol. 194, 1992, pp. 425-429. doi:10.1016/S0921-4534(05)80024-3
[69] Y. Saito, et al., “Micro-Fabrication Techniques Applied to Aluminosilicate Glass Surfaces: Micro-Indentation and Wet Etching Process,” Thin Solid Films, Vol. 517, No. 2, 2009, pp. 2900-2904. doi:10.1016/j.tsf.2008.11.077
[70] Y. Saito, et al., “Fabrication of Micro-Structure on Glass Surface Using Micro-Indentation and Wet Etching Process,” Applied Surface Science, Vol. 254, 2008, pp. 7243-7237. doi:10.1016/j.apsusc.2008.05.320
[71] O. Cakir, A. Y. T. Ozben, “Chemical Machining,” Ar- chives of Materials Science and Engineering, Vol. 28, No. 8, 2007, pp. 499-502.
[72] J. Peng, et al., “Micro-Patterning of 0.70Pb (Mg1/3Nb2/3) O3-0.30PbTiO3 Single Crystals by Ultrasonic Wet Chemical Etching,” Materials letters, Vol. 62, No. 17-18, 2008, pp. 3127-3130. doi:10.1016/j.matlet.2008.02.003

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.