The binding site for acute corticosterone effects on N-methyl-D-aspartate receptor-mediated Ca2+ signals in mouse hippocampal slices

Abstract

We have examined acute effects of corticosterone (CORT) on N-methyl-D-aspartate (NMDA) receptor-mediated Ca2+ signals in adult mouse hippocampal slices. We found so far that the 30 min preincubation of CORT induced a signifcant decrease of the peak amplitude of NMDA-induced Ca2+ elevation in the CA1 region. The membrane non-permeable bovine serum albumin-conjugated CORT also induced a similar effect in the CA1 region. Therefore the acute CORT effects should be induced via putative surface CORT receptors. A possible candidate is a classical intracellular glucocorticoid receptor (GR). To confirm this speculation, we here examined the effects of dexamethasone (DEX: an agonist of GR) and CORT with RU38486 (an antagonist of GR) on NMDA-induced Ca2+ signals. As a result, DEX induced a similar effect to the suppressive CORT effect in the CA1 region, and RU38486 inhibited the suppressive CORT effect. These results indicate that the surface CORT receptor should be GR bound to plasma mem- brane.

Share and Cite:

Osanai, H. , Suzuki, A. , Komatsuzaki, Y. , Mukai, H. , Kawato, S. and Saito, M. (2011) The binding site for acute corticosterone effects on N-methyl-D-aspartate receptor-mediated Ca2+ signals in mouse hippocampal slices. Journal of Biophysical Chemistry, 2, 430-433. doi: 10.4236/jbpc.2011.24050.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Nair, S.M., Werkman, T.R., Craig, J., Finnell, R., Joels, M. and Eberwine J.H. (1998) Corticosteroid regulation of ion channel conductances and mRNA levels in individual hippocampal CA1 neurons. The Journal of Neuroscience, 18, 2685-2696.
[2] Reagan, L.P. and McEwen, B.S. (1997) Contoversies surrounding glucocorticoid-mediated cell death in the hi- ppocampus. Journal of Chemical Neuroanatomy, 13, 149 -167. doi:10.1016/S0891-0618(97)00031-8
[3] Wooly, C.S., Gould, E. and McEwen, B.S. (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Research, 531, 225-231. doi:10.1016/0006-8993(90)90778-A
[4] Watanabe, Y., Gould, E. and McEwen, B.S. (1992) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Research, 588, 341-345. doi:10.1016/0006-8993(92)91597-8
[5] Landfield, P.W. and Pitler, T.A. (1984) Prolonged Ca2+ dependent afterhyperpolarizations in hippocampal neurons of aged rats. Science, 226, 1089-1092. doi:10.1126/science.6494926
[6] Lupien, S.J. and McEwen, B.S. (1997) The acute effect of corticosteroids on cognition: Integration of animal and human model studies. Brain Research Reviews, 24, 1-27. doi:10.1016/S0165-0173(97)00004-0
[7] Vidal, C., Jordan, W. and Zieglgansberger, W. (1986) Corticosterone reduces the excitability of hippocampal pyramidal cells in vitro. Brain Research, 383, 54-59. doi:10.1016/0006-8993(86)90007-7
[8] Kawato, S., Yamada, M. and Kimoto, T. (2001) Neurosteroids are 4th generation neuromessengers: Cell biophysical analysis of steroid signal transduction. Advances in Biophysics, 37, 1-30. doi:10.1016/S0065-227X(03)80002-3
[9] Shibuya, K., Takata, N., Hojo, Y., Furukawa, A., Yasu- masu, N., Kimoto, T., Enami, T., Suzuki, K., Tanabe, N., Ishii, H., Mukai, H., Takahashi, T., Hattori, T. and Kawato, S. (2003) Hippocampal cytochrome P450s synthesize brain neurosteroids which are paracrine neuromodulators of synaptic signal transduction. Biochimica et Biophysica Acta, 1619, 301-316.
[10] Sato, S., Osanai, H., Monma, T., Harada, T., Hirano, A., Saito, M. and Kawato, S. (2004) Acute effect of corticosterone on N-methyl-D-aspartate receptor-mediated Ca2+ elevation in mouse hippocampal slices. Biochemical and Biophysical Research Communications, 321, 510-513. doi:10.1016/j.bbrc.2004.06.168
[11] Lipositz, Z. and Bohn, M.C. (1993) Association of glucocorticoid receptor immunoreactivity with cell membrane and transport vesicles in hippocampal and hypothalamic neurons of the rat. Journal of Neuroscience Research, 35, 14-19. doi:10.1002/jnr.490350103
[12] Towle, A.C. and Sze, P.Y. (1983) Steroid binding to synaptic plasma membrane: Differential binding of glucocorticoids and gonadal steroids. Journal of Steroid Biochemistry, 18, 135-143. doi:10.1016/0022-4731(83)90079-1
[13] Guo, Z., Chen, Y.Z., Xu, R.B. and Fu, H. (1995) Binding characteristics of glucocorticoid receptor in synaptic pla- sma membrane from rat brain. Functional Neurology, 10, 183-194.
[14] Ballard, P.L., Carter, J.P., Graham, B.S. and Baxter, J.D. (1975) A radioreceptor assay for evaluation of the plasma glucocorticoid activity of natural and synthetic steroids in man. The Journal of Clinical Endocrinology & Metabolism, 41, 290-304. doi:10.1210/jcem-41-2-290
[15] Packan, D.R. and Sapolsky, R.M. (1990) Glucocorticoid endangerment of the hippocampus: Tissue, steroid and receptor specificity. Neuroendocrinology, 51, 613-618. doi:10.1159/000125400
[16] Nishi, M., Ogawa, H., Ito, T., Matsuda, K.I. and Kawata, M. (2001) Dynamic changes in subcellular localization of mineralocorticoid receptor in living cells: In comparison with glucocorticoid receptor using dual-color labeling with green fluorescent protein spectral variants. Molecular Endocrinology, 15, 1077-1092. doi:10.1210/me.15.7.1077

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.