Understanding the Glycoproteins Release from Alginate-Barium Capsules in Physiologic Enviroments
Edgar Perez Herrero, Eva M. Martin del Valle, Miguel A. Galán
.
DOI: 10.4236/aces.2011.14037   PDF    HTML     5,229 Downloads   8,628 Views   Citations

Abstract

The authors carried out a steady and unsteady mass transfer studies to simulate both the release of proteins in physiologic environments and proteins transport through a tissue or organ from polymeric capsules by using a substance, the rhodamine B isothiocyanate dextran (RBID) that mimics the behaviour of glycoproteins such as vascular endothelial growth factor (VEFG). These studies highlighted the importance of electrostatic interactions between alginate and proteins in the release processes. Thereby, this fact has opened new perspectives in order to use these kind of capsules in protein recognition processes. The electrostatic interactions between alginate and RBID allow pH-dependent controlled release systems that simulate the behaviour of glycoproteins.

Share and Cite:

E. Herrero, E. Valle and M. Galán, "Understanding the Glycoproteins Release from Alginate-Barium Capsules in Physiologic Enviroments," Advances in Chemical Engineering and Science, Vol. 1 No. 4, 2011, pp. 256-270. doi: 10.4236/aces.2011.14037.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Dai, B. Wang and H. Zhao, “Microencapsulation Peptide and Protein Drugs Delivery System,” Colloids and Surfaces B: Biointerfaces, Vol. 41, No. 2-3, 2005, pp. 117-120. doi:10.1016/j.colsurfb.2004.10.032
[2] E. M. M. Del Valle, M. A. Galan and R. G. Carbonell, “Drug Delivery Technologies: The Way Forward in the New Decade”, Industrial & Engineering Chemistry Research, Vol. 48, No. 5, 2009, pp. 2475-2486. doi:10.1021/ie800886m
[3] G. A. Peyman and G. J. Ganiban, “Delivery Systems for Intraocular Routes,” Advanced Drug Delivery Reviews, Vol. 16, No. 1, 1995, pp. 107-123. doi:10.1016/0169-409X(95)00018-3
[4] H. Kimura, et al., “Injectable Microspheres with Controlled Drug Release for Glaucoma Filtering Surgery,” Investigative Ophthalmology and Visual Science, Vol. 33, No. 12, 1992, pp. 3436-3441.
[5] D. F. Martin, “Treatment of Cytomegalovirus Retinitis with an Intraocular Sustained Release Ganciclovir Implant: A Randomized Controlled Clinical Trail,” Archives of Ophthalmology, Vol. 112, No. 12, 1994, pp. 1531- 1539.
[6] M. Otsuka, et al., “A Novel Skeletal Drug Delivery System Using a Self-Setting Calcium Phosphate Cement. 4. Effects of the Mixing Solution Volume on the Drug Release Rate of Heterogeneous Aspirin-Loaded Cement,” Journal of Pharmaceutical Sciences, Vol. 83, No. 2, 1994, pp. 259-268. doi:10.1002/jps.2600830230
[7] M. Otsuka, “A Novel Skeletal Drug Delivery System Using a Self-Setting Calcium Phosphate Cement. 5. Drug Release Behaviour from a Heterogeneous Drug Loaded Cement Containing an Anticancer Drug,” Journal of Pharmaceutical Sciences, Vol. 83, No. 11, 1994, pp. 1565-1568. doi:10.1002/jps.2600831109
[8] I. G. Needleman, “Controlled Drug Release in Periodontics: A Review of New Therapies,” British Dental Journal, Vol. 170, 1991, pp. 405-407. doi:10.1038/sj.bdj.4807569
[9] T. E. Rams and J. Slots, “Local Delivery of Antimicrobial Agents in the Periodontal Pocket,” Periodontalogy 2000, Vol. 10, No. 1, 1996, pp. 139-159.
[10] G. Greenstein and A. Polson, “The Role of Local Drug Delivery in the Management of Periodontal Diseases: A Comprehensive Review,” The Journal of periodontology, Vol. 69, No. 5, 1998, pp. 507-520.
[11] D. Y. Arifin, et al., “Mathematical Modelling and Simulation of Drug Release from Microspheres: Implications to Drug Delivery Systems,” Advanced Drug Delivery Reviews, Vol. 58, No. 12-13, 2006, pp. 1274-1325. doi:10.1016/j.addr.2006.09.007
[12] L. Cumbal, A. K. SanGupta, J. Greenlead and D. Leun, “Polymer Supported Subcolloidal Particles: Characterization and Environmental Application,” In: S. Barany, Ed., Role of interfaces in environmental protection, Kluwer Academics Publishers, Dordrecht, 2003.
[13] R. P. Haugland, “The Handbook—A Guide to Florescent Probes and Labelling Technologies,” Molecular Proves Inc., Invitrogen, 2005.
[14] P. Peng, N. H. Voelcker, S. Kumar and H. J. Griesser, “Nanoscale Eluting Coatings based on Alginate/Chitosan Hydrogels,” Bioinerphases, Vol. 2, No. 2, 2007, pp. 95- 104. doi:10.1116/1.2751126
[15] T. Kawaguchi and M. Hasegawa, “Structure of Dextran-Magnetite Complex: Relation between Conformation of Dextran Chains Covering Core and Its Molecular Weight,” Journal of Materials Science, Vol. 11, No. 1, 2000, pp. 31-35. doi:10.1023/A:1008933601813
[16] E. P. Herrero, E. M. M. Del Valle and M. A. Galan, “Immobilization of Mesenchymal Stem Cells and Monocytes in Biocompatible Microcapsules to Cell Therapy,” Biotechnology Progress, Vol. 23, No. 4, 2007, pp. 940- 945.
[17] J. L. Sharon and D. A. Puleo, “Immobilization of Glycoproteins, such as VEGF, on Biodegradable Substrates,” Acta Biomaterialia, Vol. 4, No. 4, 2008, pp. 1016-1023. doi:10.1016/j.actbio.2008.02.017
[18] A. Blandino, M. Macias and D. Cantero, “Glucose Oxidase Release from Calcium Alginate Gel Capsules,” Enzyme Microbial Technology, Vol. 27, No. 3-5, 2000, pp. 319-324. doi:10.1016/S0141-0229(00)00204-0
[19] D. Lewinska, et al., “Mass Transfer Coefficient in Characterization of Gel Beads and Microcapsules,” Journal of Membrane Science, Vol. 209, No. 2, 2002, pp. 533-540. doi:10.1016/S0376-7388(02)00370-8
[20] D. F. Radeliffe and J. D. S. Gaylor, “Sorption Kinetics in Haemoperfusion Columns. Part. 1. Estimation of Mass transfer Parameters,” Medical and Biological Engineering and Computing, Vol. 19, No. 5, 1981, pp. 617-627. doi:10.1007/BF02442777
[21] N. Wakao and T. Funazkri, “Effect of Fluid Dispersion Coefficients on Particle-To-Fluid Mass Transfer Coefficients in Packed Beds: Correlation of Sherwood Numbers,” Chemical Engineering Science, Vol. 33, No. 10, 1978, pp. 1375-1384. doi:10.1016/0009-2509(78)85120-3
[22] N. Wakao and J. M. Smith, “Diffusion in Catalyst Pellets,” Chemical Engineering Science, Vol. 17, No. 11, 1962, pp. 825-834. doi:10.1016/0009-2509(62)87015-8
[23] S. Koutsopoulos, L. D. Unsworth, Y. Nagai and S. Zhang, “Controlled Release of Functional Proteins through Designer Self-Assembling Peptide Nanofiber Hydrogel Scaffold,” PNAS, Vol. 106, No. 12, 2009, pp. 4623-4628. doi:10.1073/pnas.0807506106
[24] M. Hoyos, “Separación Hidrodinámica de Macromoléculas, Partículas y Células,” Acta Biológica Colombiana, Vol. 8, No. 1, 2003, pp. 11-24.
[25] Z.-G. Feng and E. E. Michaelides, “Unsteady Mass Transport from a Sphere Immersed in a Porous Medium at Finite Peclet Numbers,” International Journal of Heat Mass and Transfer, Vol. 42, No. 3, 1999, pp. 535-546. doi:10.1016/S0017-9310(98)00160-4
[26] R. Jecl, et al., “Boundary Domain Integral Method for Transport Phenomena in Porous Media,” International Journal of Numerical Methods Fluids, Vol. 35, No. 1, 2001, pp. 39-54. doi:10.1002/1097-0363(20010115)35:1<39::AID-FLD81>3.0.CO;2-3
[27] R. B. Bird, W. E. Stewart and E. N. Lightfoot, “Transport Phenomena,” John Wiley & Sons, Inc., New York, 2002.
[28] T. C. Papanastasiou, “Applied Fluid Mechanics,” PTR Prentice Hall, New Jersey, 1994.
[29] J. Crank, “The Mathematics of Diffusion,” Clarendon Press, Oxford, 1975.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.