Structured Perovskite-Based Oxides: Use in the Combined Methane Reforming

Abstract

The behavior of metallic structured perovskite-based catalysts was evaluated in the combined methane reforming reaction with CO2-O2. The reaction conditions were established by varying the reaction temperature and reactor input composition in the range of 650 to 850℃ and CH4/CO2 ratio 1 to 5, respectively. The results of the catalytic tests at 750℃ showed a positive effect of the metallic structure, producing higher conversions and H2/CO ratios in the products compare to that obtained with the powder catalyst.

Share and Cite:

A. García, N. Becerra, L. García, I. Ojeda, E. López, C. López and M. Goldwasser, "Structured Perovskite-Based Oxides: Use in the Combined Methane Reforming," Advances in Chemical Engineering and Science, Vol. 1 No. 4, 2011, pp. 169-175. doi: 10.4236/aces.2011.14025.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. Profeti, E. Ticianelli and E. Assaf, “Co/Al2O3 Catalysts Promoted with Noble Metals for Production of Hydrogen by Methane Steam Reforming,” Fuel, Vol. 87, No. 10-11, 2008, pp. 2076-2081. doi:10.1016/j.fuel.2007.10.015
[2] A. Iulianelli, G. Manzolini, S. Campanari, T. Longo, S. Liguori and A. Basile, “H2 Production by Low Pressure Methane Steam Reforming in a Pd-Ag Membrane Reactor over a Ni-Based Catalyst: Experimental and Modeling,” International Journal of Hydrogen Energy, Vol. 35, No. 20, 2010; 35, pp. 11514-11524.
[3] X. Song and Z. Guo, “Technologies for Direct Production of Flexible H2/CO Synthesis gas,” Energy. Conversion and Management, Vol. 47, No. 5, 2006, pp. 560-569. doi:10.1016/j.enconman.2005.05.012
[4] G. Wang and M. Coppens, “Rational Design of Hierarchically Structured Porous Catalyst for Autothermal Reforming of Methane,” Chemical Engineering Science, Vol. 65, No. 7, 2010, pp. 2344-2351. doi:10.1016/j.ces.2009.09.079
[5] A. De Souza, L. Lins, N. Filho and C. De Abreu, “Catalytic Activity Evaluation for Hydrogen Production via Autothermal Reforming of Methane,” Catalysis Today, Vol. 149, No. 3-4, 2010, pp. 413-417. doi:10.1016/j.cattod.2009.06.003
[6] W. Chen, M. Lin, J. Lu, Y. Chao and T. Leu, “Thermodynamic Analysis of Hydrogen Production from Methane via Autothermal Reforming and Partial Oxidation Followed by Water Gas Shift Reaction,” International Journal of Hydrogen Energy, Vol. 35, No. 21, 2010, pp. 11787-11797. doi:10.1016/j.ijhydene.2010.08.126
[7] R. Ganesh, D. Bhaskar and R. Ajit, “Thermodynamic Study of Combining Chemical Looping Combustion and Combined Reforming of Propane,” Fuel, Vol. 89, No. 10, 2010, pp. 3141-3146. doi:10.1016/j.fuel.2010.05.029
[8] Q. Jing and X. Zheng, “Combined Catalytic Partial Oxidation and CO2 Reforming of Methane over ZrO2-Modified Ni/SiO2 Catalysts Using Fluidized-Bed Reactor,” Energy, Vol. 31, No. 12, 2006, pp. 2184-2192. doi:10.1016/j.energy.2005.07.005
[9] J. Múnera, C. Carrara, L. Cornaglia and E. Lombardo, “Combined Oxidation and Reforming of Methane to Produce Pure H2 in a Membrane Reactor,” Chemical Engineering Journal, Vol. 161, No. 1-2, 2010, pp. 204-211. doi:10.1016/j.cej.2010.04.022
[10] J. Gao, Z. Hou, X. Liu, Y. Zeng, M. Luo and X. Zheng, “Methane Autothermal Reforming with CO2 and O2 to Synthesis Gas at the Boundary between Ni and ZrO2,” International Journal of Hydrogen Energy, Vol. 34, No. 9, 2009, pp. 3734-3742. doi:10.1016/j.ijhydene.2009.02.074
[11] J. ?ojewska, A. Ko?odziej, T. ?ojewski, R. Kapica and J. Tyczkowski, “Structured Cobalt Oxide Catalyst for VOC Combustion. Part I: Catalytic and Engineering Correlations,” Applied Catalysis A: General, Vol. 366, No. 1, 2009, pp. 206- 211. doi:10.1016/j.apcata.2009.07.006
[12] A. Ko?odziej, W. Krajewski and A. Dubis, “Alternative Solution for Strongly Exothermal Catalytic Reactions: A New Metal-Structured Catalyst Carrier,” Catalysis Today, Vol. 69, No. 1-4, 2001, pp. 115-120. doi:10.1016/S0920-5861(01)00361-3
[13] J. Lojewska, A. Kolodziej, R. Kapica, A. Knapik and J. Tyczkowski, “In Search for Active Non-Precious Metal Catalyst for VOC Combustion: Evaluation of Plasma Deposited Co and Co/Cu Oxide Catalysts on Metallic Structured Carriers,” Catalysis Today, Vol. 147, Suppl. 1, 2009, pp. S94-S98. doi:10.1016/j.cattod.2009.07.021
[14] R. Pere?íguez, V. González-DelaCruz, J. Holgado and A. Caballero, “Synthesis and Characterization of a LaNiO3 Perovskite as Precursor for Methane Reforming Reactions Catalysts,” Applied Catalysis B: Environmental, Vol. 93, No. 3-4, 2010, pp. 346-353. doi:10.1016/j.apcatb.2009.09.040
[15] M. Goldwasser, M. Rivas, M. Lugo, E. Pietri, M. Pérez-Zurita, M. Cubeiro, A. Griboval-Constant and G. Leclercq, “Combined Methane Reforming in Presence of CO2 and O2 over LaFe1?xCoxO3 Mixed-Oxide Peorvskites as Catalysts Precursors,” Catalysis Today, Vol. 107-108, 2008, pp. 106-113. doi:10.1016/j.cattod.2005.07.073
[16] G. Sierra Gallego, J. Gallego Marín, C. Batiot-Dupeyrat , J. Barrault and F. Mondragón, “Influence of Pr and Ce in Dry Methane Reforming Catalysts Produced from La1?xAxNiO3?δ Perovskites,” Applied Catalysis A: General, Vol. 369, No. 1-2, 2009, pp. 97-103.
[17] K. Urasaki, Y. Sekine, S. Kawabe, E. Kikuchi and M. Matsukata, “Catalytic Activities and Coking Resistance of Ni/Perovskites in Steam Reforming of Methane,” Applied Catalysis A: General, Vol. 286, No. 1, 2005, pp. 23-29. doi:10.1016/j.apcata.2005.02.020
[18] M. Goldwasser, M. Rivas, E. Pietri, M. Pérez-Zurita, M. Cubeiro, L. Gingembre, L. Leclercq and G. Leclercq, “Perovskites as Catalysts Precursors: CO2 Reforming of CH4 on Ln1?xCaxRu0.8Ni0.2O3 (Ln = La, Sn, Nd),” Applied Catalysis A: General, Vol. 255, No. 1-2, 2003, pp. 45-57. doi:10.1016/S0926-860X(03)00643-4
[19] A. Majid, J. Tunney, S. Argue, D. Wang, M. Post and J. Margeson, “Preparation of SrFeO2.85 Perovskite Using a Citric Acid Assisted Pechini-Type Method,” Journal of Alloy and Compounds, Vol. 398, No. 1-2, 2005, pp. 48-54. doi:10.1016/j.jallcom.2005.02.023
[20] P. Suess and L. Spiegel, “Hold-Up of Mellapak Structured Packings,” Chemical Engineering and Processing, Vol. 31, 1992, pp. 119-124. doi:10.1016/0255-2701(92)85005-M
[21] V. Meille, “Review on Methods to Deposit Catalysts on Structured Surfaces,” Applied Catalysis A: General, Vol. 315, 2006, pp. 1-17. doi:10.1016/j.apcata.2006.08.031
[22] N. Saidina Amin and T. Chun Yaw, “Thermodynamic Equilibrium Analysis of Combined Carbon Dioxide Reforming with Partial Oxidation of Methane to Syngas,” International Journal of Hydrogen Energy, Vol. 32, No. 12, 2007, pp. 1789-1798. doi:10.1016/j.ijhydene.2006.12.004
[23] M. Simeone, L. Salemme, D. Scognamiglio, C. Allouis and G. Volpicelli, “Effect of Water Addition and Stoichiometry Variations on Temperature Profiles in an Autothermal Methane Reforming Reactor with Ni Catalyst,” International Journal of Hydrogen Energy, Vol. 33, No. 4, 2008, pp. 1252-1261. doi:10.1016/j.ijhydene.2007.12.034
[24] O. Lian Ding and S. Hwa Chan, “Water-Gas Shift Assisted Autothermal Reforming of Methane Gas-Transient and Cold Start Studies,” International Journal of Hydrogen Energy, Vol. 34, No. 1, 2009, pp. 270-284. doi:10.1016/j.ijhydene.2008.09.079
[25] J. Rynkowski, P. Samulkiewicz, A. Ladavos and P. Pomonis, “Catalytic Performance of Reduced La2?xSrxNiO4 Perovskite-Like Oxides for CO2 Reforming of CH4,” Applied Catalysis A: General, Vol. 263, No. 1, 2004, pp. 1-9. doi:10.1016/j.apcata.2003.11.022
[26] A. Slagtern, Y. Schuurman, C. Leclercq, X. Verykios and C. Mirodatos, “Specific Features Concerning the Mechanism of Methane Reforming by Carbon Dioxide over Ni/La2O3 Catalyst,” Journal of Catalysis, Vol. 172, No. 1, 1997, pp. 118-126.doi:10.1006/jcat.1997.1823

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.