Crystal structure, thermal analysis and IR spectroscopic investigation of bis (N-methyl anilinium) sulfate
Taha Guerfel, Amor Jouini
.
DOI: 10.4236/ojic.2011.13007   PDF    HTML     4,470 Downloads   10,041 Views   Citations

Abstract

Chemical preparation, X-ray single crystal, thermal analysis and IR spectroscopic investigation of (C7H10N)2 SO4 denoted NMAS are described. The NMAS crystallizes in the triclinic system with P-1 space group. Its unit cell dimensions are a = 9.6150(5) Å, b = 9.9744(3) Å, c = 10.2767(6) Å, α = 68.069(3)°, β = 62.929(2)°, γ = 67.285(3)° with V = 785.72(7) Å3 and Z = 2. The structure has been solved using direct method and refined to a reliability R factor of 3.62%. The NMAS structure is built up from chains containing all the components of the structure and parallel to the b axis, linked via N—H­­­­­···O hydrogen bonds. Stability between successive chains is performed by weak interactions originating from the organic cations.

Share and Cite:

Guerfel, T. and Jouini, A. (2011) Crystal structure, thermal analysis and IR spectroscopic investigation of bis (N-methyl anilinium) sulfate. Open Journal of Inorganic Chemistry, 1, 47-53. doi: 10.4236/ojic.2011.13007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Bazinet, L., Pouliot, Y. and Castaigne, F. (2010) Relative contributions of charged species to conductivity changes in skim milk during electrochemical acidification. Journal of Membrane Science, 352, 32-40. doi:10.1016/j.memsci.2010.01.056
[2] Tang, B., Xu, T. and Yang, W. (2006) A novel positively charged asymmetry membranes from poly (2,6-dimethyl-1,4-phenylene oxide) by benzyl bromination and in situ amination: Part II: Effect of charged group species on membrane performance and morphologies. Journal of Membrane Science, 268, 123-131. doi:10.1016/j.memsci.2005.05.029
[3] Kuhn, M.C.A., Lapis, A.A.M., Machado, G., Roisnel, T., Carpentier, J.-F., Neto, B.A.D. and Casagrande, O.L. (2011) Nickel-containing di-charged imidazolium ligand with high crystalline organization. Interception and characterization of a transient carbene/cation species. Inorganica Chimica Acta, 370, 505-512. doi:10.1016/j.ica.2011.02.060
[4] Liu, C. and Zhang, Y. (2011) Nucleic acid-mediated protein aggregation and assembly. Advances in Protein Chemistry and Structural Biology, 84, 1-40.
[5] Huang, X., Yang, Z., Yang, X.-J., Zhao, Q., Xia, Y. and Wu, B. (2010) Sulfate binding in zinc(II) complexes of a monopyridylurea ligand N-(1-naphthyl)-N’-(3-pyridyl)urea. Inorganic Chemistry Communications, 13, 1103-1107. doi:10.1016/j.inoche.2010.06.037
[6] Krishnakumar, V., Ramachandraraja, C. and Sundararajan, R.S. (2007) Crystal growth and vibrational spectroscopic studies of the semiorganic non-linear optical crystal—bisthiourea magnesium sulphate. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68, 113-116. doi:10.1016/j.saa.2006.09.045
[7] Czapla, Z., Komar, J., Marciniszyn, T. and Poprawski, R. (2011) Phase transition and anisotropic conductivity in guanidine zinc sulfate crystals. Solid State Ionics, 196, 25-29. doi:10.1016/j.ssi.2011.05.021
[8] Choudhury, R.R., Chitra, R. and Ramanadham, M. (2005) Effect of isotope substitution and pressure on the phase transition in triglycine sulphate. Physica B: Condensed Matter, 366, 116-121.
[9] Otwinowski, Z. and Minor, W. (1997) In methods in enzymology. Academic Press, New York.
[10] Sheldrick, G.M. (1997) SHELX-97, University of G?ttingen, Germany.
[11] Baouab, L. and Jouini, A. (1998) Crystal structures and thermal behavior of two new organic monophosphates. Journal of Solid State Chemistry, 141, 343-351. doi:10.1006/jssc.1998.7933
[12] Hertzberg, G. (1966) Infrared and Raman spectra of polyatomic molecules. Van Nostrand, New York.
[13] Nakamoto, K. (1986) IR and Ra spectra of Inorg. and Coord. Comp. Wiley-Interscience, New York.
[14] Guerfel, T. and Jouini, A. (2000) Crystal structure and thermal analysis of 1,5-diammonium-2-methyl pentane sulfate monohydrate. Journal of Chemical Crystallography, 30, 95-98. doi:10.1023/A:1009561411167
[15] Capasso, S., Mattia, C.A., Mazzarella, L. and Zagari, A. (1983) L-Lysine sulphate, C6H16N2O22+?SO42–: A novel conformation of the L-lysine side chain. Acta Crystallographica, C39, 281-283. doi:10.1107/S0108270183004400
[16] Haile, S.M., Calkins, P.M. and Boysen, D. (1998) Structure and vibrational spectrum of β-Cs3(HSO4)2[H2?x(P1?x, Sx)O4] (x~0.5), a new superprotonic conductor, and a comparison with α-Cs3(HSO4)2(H2PO4). Journal of Solid State Chemistry, 139, 373-387. doi:10.1006/jssc.1998.7861
[17] Baur, W.H. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica, B30, 1195-1215. doi:10.1107/S0567740874004560
[18] Farrugia, L.J. (1997) ORTEP-3 for Windows—A version of ORTEP-III with a graphical user interface (GUI). Journal of Applied Crystallography, 30, 565-568. doi:10.1107/S0021889897003117
[19] Haile, S.M., Kreuer, K.-D and Maier, J. (1995) Structure of Cs3(HSO4)2(H2PO4)—A new compound with a superprotonic phase transition. Acta Crystallographica, B51, 680-687. doi:10.1107/S0108768195005684
[20] Domenicano, A. and Murray-Rust, P. (1979) Geometrical substituent parameters for benzene derivatives: Inductive and resonance effects. Tetrahedron Letters, 24, 2283-2286. doi:10.1016/S0040-4039(01)93699-8

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.