[1]
|
Kuwahara, Y., Li, L., Baba, T., Nakagawa, H., Shimura, T., Yamamoto, Y., Ohkubo, Y. and Fukumoto, M. (2009) Clinically Relevant Radioresistant Cells Efficiently Repair DNA Double-Strand Breaks Induced by X-Rays. Cancer Science, 100, 747-752. https://doi.org/10.1111/j.1349-7006.2009.01082.x
|
[2]
|
Qing, Y., Yang, X.Q., Zhong, Z.Y., Lei, X., Xie, J.Y., Li, M.X., Xiang, D.B., Li, Z.P., Yang, Z.Z., Wang, G. and Wang, D. (2010) Microarray Analysis of DNA Damage Repair Gene Expression Profiles in Cervical Cancer Cells Radioresistant to 252Cf Neutron and X-Rays. BMC Cancer, 10, 71. https://doi.org/10.1186/1471-2407-10-71
|
[3]
|
Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D. and Rich, J.N. (2006) Glioma Stem Cells Promote Radioresistance by Preferential Activation of the DNA Damage Response. Nature, 444, 756-760. https://doi.org/10.1038/nature05236
|
[4]
|
Lynam-Lennon, N., Reynolds, J.V., Pidgeon, G.P., Lysaght, J., Marignol, L. and Maher, S.G. (2010) Alterations in DNA Repair Efficiency Are Involved in the Radioresistance of Esophageal Adenocarcinoma. Radiation Research, 174, 703-711. https://doi.org/10.1667/RR2295.1
|
[5]
|
Shimura, T., Kakuda, S., Ochiai, Y., Nakagawa, H., Kuwahara, Y., Takai, Y., Kobayashi, J., Komatsu, K. and Fukumoto, M. (2010) Acquired Radioresistance of Human Tumor Cells by DNA-PK/AKT/GSK3Beta-Mediated Cyclin D1 Overexpression. Oncogene, 29, 4826-4837. https://doi.org/10.1038/onc.2010.238
|
[6]
|
Shimura, T., Ochiai, Y., Noma, N., Oikawa, T., Sano, Y. and Fukumoto, M. (2013) Cyclin D1 Overexpression Perturbs DNA Replication and Induces Replication-Associated DNA Double-Strand Breaks in Acquired Radioresistant Cells. Cell Cycle, 12, 773-782. https://doi.org/10.4161/cc.23719
|
[7]
|
de Llobet, LI., Baro, M., Figueras, A., Modolell, I., Da Silva, M.V., Muñoz, P., Navarro, A., Mesia, R. and Balart, J. (2013) Development and Characterization of an Isogenic Cell Line with a Radioresistant Phenotype. Clinical and Translational Oncology, 15, 189-197.
|
[8]
|
Diehn, M., Cho, R.W., Lobo, N.A., Kalisky, T., Dorie, M.J., Kulp, A.N., Qian, D., Lam, J.S., Ailles, L.E., Wong, M., Joshua, B., Kaplan, M.J., Wapnir, I., Dirbas, F.M., Somlo, G., Garberoglio, C., Paz, B., Shen, J., Lau, S.K., Quake, S.R., Brown, J.M., Weissman, I.L. and Clarke, M.F. (2009) Association of Reactive Oxygen Species Levels and Radioresistance in Cancer Stem Cells. Nature, 458, 780-783. https://doi.org/10.1038/nature07733
|
[9]
|
Gupta, S.C., Hevia, D., Patchva, S., Park, B., Koh, W. and Aggarwal, B.B. (2012) Upsides and Downsides of Reactive Oxygen Species for Cancer: the Roles of Reactive Oxygen Species in Tumorigenesis, Prevention, and Therapy. Antioxidants & Redox Signaling, 16, 1295-1322. https://doi.org/10.1089/ars.2011.4414
|
[10]
|
McDermott, N., Meunier, A., Lynch, T.H., Hollywood, D. and Marignol, L. (2014) Isogenic Radiation Resistant Cell Lines: Development and Validation Strategies. International Journal of Radiation Biology, 90, 115-126. https://doi.org/10.3109/09553002.2014.873557
|
[11]
|
Chang, L., Graham, P.H., Hao, J., Ni, J., Bucci, J., Cozzi, P.J., Kearsley, J.H. and Li, Y. (2014) PI3K/Akt/mTOR Pathway Inhibitors Enhance Radiosensitivity in Radioresistant Prostate Cancer Cells through Inducing Apoptosis, Reducing Autophagy, Suppressing NHEJ and HR Repair Pathways. Cell Death and Disease, 5, e1437. https://doi.org/10.1038/cddis.2014.415
|
[12]
|
Kuwahara, Y., Oikawa, T., Ochiai, Y., Roudkenar, M.H., Fukumoto, M., Shimura, T., Ohtake, Y., Ohkubo, Y., Mori, S., Uchiyama, Y. and Fukumoto, M. (2011) Enhancement of Autophagy Is a Potential Modality for Tumors Refractory to Radiotherapy. Cell Death and Disease, 2, e177. https://doi.org/10.1038/cddis.2011.56
|
[13]
|
Kim, K.W., Moretti, L., Mitchell, L.R., Jung, D.K. and Lu, B. (2009) Combined Bcl-2/Mammalian Target of Rapamycin Inhibition Leads to Enhanced Radiosensitization via Induction of Apoptosis and Autophagy in Non-Small Cell Lung Tumor Xenograft Model. Clinical Cancer Research, 15, 6096-6105. https://doi.org/10.1038/cddis.2011.56
|
[14]
|
Lynam-Lennon, N., Maher, S.G., Maguire, A., Phelan, J., Muldoon, C., Reynolds, J.V. and O'Sullivan, J. (2014) Altered Mitochondrial Function and Energy Metabolism Is Associated with a Radioresistant Phenotype in Oesophageal Adenocarcinoma. PLoS One, 9, e100738. https://doi.org/10.1371/journal.pone.0100738
|
[15]
|
Kim, J.J. and Tannock, I.F. (2005) Repopulation of Cancer Cells during Therapy: An Important Cause of Treatment Failure. Nature Review Cancer, 5, 516-525. https://doi.org/10.1038/nrc1650
|
[16]
|
Kelland, L.R., Edwards, S.M. and Steel, G.G. (1988) Induction and Rejoining of DNA Double-Strand Breaks in Human Cervix Carcinoma Cell Lines of Differing Radiosensitivity. Radiation Research, 116, 526-538. https://doi.org/10.2307/3577394
|
[17]
|
Wlodek, D. and Hittelman, W.N. (1987) The Repair of Double-Strand DNA Breaks Correlates with Radiosensitivity of L5178Y-S and L5178Y-R Cells. Radiation Research, 112, 146-155. https://doi.org/10.2307/3577085
|
[18]
|
Li, Y., Li, H., Peng, W., He, X.Y., Huang, M., Qiu, D., Xue, Y.B. and Lu, L. (2015) DNA-Dependent Protein Kinase Catalytic Subunit Inhibitor Reverses Acquired Radioresistance in Lung Adenocarcinoma by Suppressing DNA Repair. Molecular Medicine Reports, 12, 1328-1334. https://doi.org/10.3892/mmr.2015.3505
|
[19]
|
Young, A., Berry, R., Holloway, A.F., Blackburn, N.B., Dickinson, J.L., Skala, M., Phillips, J.L. and Brettingham-Moore, K.H. (2014) RNA-Seq Profiling of a Radiation Resistant and Radiation Sensitive Prostate Cancer Cell Line Highlights Opposing Regulation of DNA Repair and Targets for Radiosensitization. BMC Cancer, 14, 808. https://doi.org/10.1186/1471-2407-14-808
|
[20]
|
Aypar, U., Morgan, W.F. and Baulch, J.E. (2011) Radiation-Induced Genomic Instability: Are Epigenetic Mechanisms the Missing Link? International Journal of Radiation Biology, 87, 179-191. https://doi.org/10.3109/09553002.2010.522686
|
[21]
|
Streffer, C. (2010) Strong Association between Cancer and Genomic Instability. Radiation and Environmental Biophysics, 49, 125-131. https://doi.org/10.1007/s00411-009-0258-4
|
[22]
|
Morgan, W.F. and Murnane, J.P. (1995) A Role for Genomic Instability in Cellular Radioresistance? Cancer Metastasis Review, 14, 49-58. https://doi.org/10.1007/BF00690211
|
[23]
|
Stout, J.T. and Caskey, C.T. (1985) HPRT: Gene Structure, Expression, and Mutation. Annual Review of Genetics, 19, 127-148. https://doi.org/10.1146/annurev.ge.19.120185.001015
|
[24]
|
Kuwahara, Y., Mori, M., Oikawa, T., Shimura, T., Ohtake, Y., Mori, S., Ohkubo, Y. and Fukumoto, M. (2010) The Modified High-Density Survival Assay Is the Useful Tool to Predict the Effectiveness of Fractionated Radiation Exposure. Journal of Radiation Research, 51, 297-302. https://doi.org/10.1269/jrr.09094
|
[25]
|
Kubota, N., Okada, S., Nagatomo, S., Ozawa, F., Inada, T., Hill, C.K., Endo, S. and Komatsu, K. (1999) Mutation Induction and RBE of Low Energy Neutrons in V79 Cells. Journal of Radiation Research, 40, 21-27. https://doi.org/10.1269/jrr.40.S21
|
[26]
|
Kagawa, Y., Shimazu, T., Gordon, A.J., Fukunishi, N., Inabe, N., Suzuki, M., Hirano, M., Kato, T., Watanabe, M., Hanaoka, F. and Yatagai, F. (1999) Complex Hprt Deletion Events Are Recovered after Exposure of Human Lymphoblastoid Cells to High-LET Carbon and Neon Ion Beams. Mutagenesis, 14, 199-205. https://doi.org/10.1269/jrr.40.S21
|
[27]
|
Guerriero, E., Sorice, A., Capone, F., Napolitano, V., Colonna, G., Storti, G., Castello, G. and Costantini, S. (2014) Vitamin C Effect on Mitoxantrone-Induced Cytotoxicity in Human Breast Cancer Cell Lines. PLoS One, 9, e115287. https://doi.org/10.1371/journal.pone.0115287
|
[28]
|
Taneja, N., Davis, M., Choy, J.S., Beckett, M.A., Singh, R., Kron, S.J. and Weichselbaum, R.R. (2004) Histone H2AX Phosphorylation as a Predictor of Radiosensitivity and Target for Radiotherapy. Journal of Biological Chemistry, 279, 2273-2280. https://doi.org/10.1074/jbc.M310030200
|
[29]
|
El-Awady, R.A., Mahmoud, M., Saleh, E.M., El-Baky, H.A., Lotayef, M., Dahm-Daphi, J. and Dikomey, E. (2005) No Correlation between Radiosensitivity or Double-Strand Break Repair Capacity of Normal Fibroblasts and Acute Normal Tissue Reaction after Radiotherapy of Breast Cancer Patients. International Journal of Radiation Biology, 81, 501-508. https://doi.org/10.1080/09553000500280500
|
[30]
|
El-Awady, R.A., Dikomey, E. and Dahm-Daphi, J. (2003) Radiosensitivity of Human Tumour Cells Is Correlated with the Induction But Not with the Repair of DNA Double-Strand Breaks. British Journal of Cancer, 89, 593-601. https://doi.org/10.1038/sj.bjc.6601133
|
[31]
|
Olive, P.L., Banath, J.P. and MacPhail, H.S. (1994) Lack of a Correlation between Radiosensitivity and DNA Double-Strand Break Induction or Rejoining in Six Human Tumor Cell Lines. Cancer Research, 54, 3939-3946.
|
[32]
|
Mahrhofer, H., Burger, S., Oppitz, U., Flentje, M. and Djuzenova, C.S. (2006) Radiation Induced DNA Damage and Damage Repair in Human Tumor and Fibroblast Cell Lines Assessed by Histone H2AX Phosphorylation. International Journal of Radiation Oncology·Biology·Physics, 64, 573-580. https://doi.org/10.1016/j.ijrobp.2005.09.037
|
[33]
|
Little, J.B., Nagasawa, H., Pfenning, T. and Vetrovs, H. (1997) Radiation-Induced Genomic Instability: Delayed Mutagenic and Cytogenetic Effects of X Rays and Alpha Particles. Radiation Research, 148, 299-307. https://doi.org/10.2307/3579514
|
[34]
|
Limoli, C.L., Corcoran, J.J., Jordan, R., Morgan, W.F. and Schwartz, J.L. (2001) A Role for Chromosomal Instability in the Development and Selection for Radioresistant Cell Variants. British Journal of Cancer, 84, 489-492. https://doi.org/10.1054/bjoc.2000.1604
|
[35]
|
Radisky, D.C., Levy, D.D., Littlepage, L.E., Liu, H., Nelson, C.M., Fata, J.E., Leake, D., Godden, E.L., Albertson, D.G., Nieto, M.A., Werb, Z. and Bissell, M.J. (2005) Rac1b and Reactive Oxygen Species Mediate MMP-3-Induced EMT and Genomic Instability. Nature, 436, 123-127. https://doi.org/10.1038/nature03688
|
[36]
|
Sallmyr, A., Fan, J. and Rassool, F.V. (2008) Genomic Instability in Myeloid Malignancies: Increased Reactive Oxygen Species (ROS), DNA Double Strand Breaks (DSBs) and Error-Prone Repair. Cancer Letter, 270, 1-9. https://doi.org/10.1016/j.canlet.2008.03.036
|
[37]
|
Kim, G.J., Chandrasekaran, K. and Morgan, W.F. (2006) Mitochondrial Dysfunction, Persistently Elevated Levels of Reactive Oxygen Species and Radiation-Induced Genomic Instability: A Review. Mutagenesis, 21, 361-367. https://doi.org/10.1093/mutage/gel048
|
[38]
|
Leonhardt, E.A., Trinh, M., Chu, K. and Dewey, W.C. (1999) Evidence That Most Radiation-Induced HPRT Mutants Are Generated Directly by the Initial Radiation Exposure. Mutation Research, 426, 23-30. https://doi.org/10.1016/S0027-5107(99)00080-9
|
[39]
|
Goldstein, M. and Kastan, M.B. (2015) The DNA Damage Response: Implications for Tumor Responses to Radiation and Chemotherapy. Annual Review of Medicine, 66, 129-143. https://doi.org/10.1146/annurev-med-081313-121208
|
[40]
|
Ward, A., Khanna, K.K. and Wiegmans, A.P. (2015) Targeting Homologous Recombination, New Pre-Clinical and Clinical Therapeutic Combinations Inhibiting RAD51. Cancer Treatment Reviews, 41, 35-45. https://doi.org/10.1016/j.ctrv.2014.10.006
|
[41]
|
Seluanov, A., Mao, Z. and Gorbunova, V. (2010) Analysis of DNA Double-Strand Break (DSB) Repair in Mammalian Cells. Journal of Visualized Experiments, 43. https://doi.org/10.3791/2002
|