Fabrication and characterization of the Ti-Ca-P composites by vacuum sintering

Abstract

Using Ti and biphasic calcium phosphate (BCP) pow-ders, Ti-Ca-P composites which contained 0 - 30 vol.% BCP powders initially, were fabricated by vac-uum sintering at two different sintering temperatures, 1300°C and 1400°C. Detailed microstructural char-acteristics of the resulting composites were investi-gated. Mechanical properties like compressive strength, Vickers hardness were evaluated and they showed decreasing trend with the increasing initial BCP content. The x-ray diffraction (XRD) profiles revealed that extensive chemical reaction occurred and the initial BCP was degraded and formed CaO, TiO2, TiP, CaTiO3. However, the cell viability by MTT assay and cell proliferation behavior through one cell morphology analysis showed excellent in-creasing trend in biocompatibility which makes this materials suitable for hard tissue aid material.And the composite containing 30 vol.% BCP content with Ti sintered at 1400°C showed excellent biocompati-bility with the Vickers Hardness value 108.8 HV and the compressive strength value 303.7 MPa.

Share and Cite:

Mondal, D. , Sarkar, S. , Lee, D. , Lee, Y. and Lee, B. (2011) Fabrication and characterization of the Ti-Ca-P composites by vacuum sintering. Journal of Biomedical Science and Engineering, 4, 583-590. doi: 10.4236/jbise.2011.49074.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Healy, K.E. and Ducheyne, P. (1992) The mechanisms of passive dissolution of titanium in a model physiological environment. Journal of Biomedical Materials Research, 26, 319-338. doi:10.1002/jbm.820260305
[2] Nanci, A., Wuest, J.D., Peru, L., Brunet, P., Sharma, V., Zalzal S. and McKee, M.D. (1998) Chemical modification of titanium surfaces for covalent attachment of biological molecules. Journal of Biomedical Materials Research, 40, 324-335. doi:10.1002/(SICI)1097-4636(199805)40:2<324::AID-JBM18>3.0.CO;2-L
[3] Albrektsson, T. and Hansson, H.A. (1986) An ultrastructural characterization of the interface between bone and sputtered titanium or stainless steel surfaces. Biomaterials, 7, 201-205. doi:10.1016/0142-9612(86)90103-1
[4] Damien C.J. and Persons, J.R. 1992, Bone graft and bone graft substitutes: a review of current technology and applications. Journal of Applied Biomaterials, 2, 187- 208. doi:10.1002/jab.770020307
[5] Hench, L.L. (1999) Bioactive Glasses and Glass- Ceramics. Materials Science Forum, 293, 37-64. doi:10.4028/www.scientific.net/MSF.293.37
[6] McGrory, B.J., Morrey, B.F., Cahalan, T.D. and Cabanela M.E. (1995) Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. Journal of Bone and Joint Surgery, 77, 865-869.
[7] Elliott, J.C., Mackie P.E. and Young, R.A. (1973) Monoclinic Hydroxyapatite. Science, 108, 1055-1057. doi:10.1126/science.180.4090.1055
[8] Hong, L., Xu H.C. and De Groot, K. (1992) Tensile strength of the interface between hydroxyapatite and bone. Journal of Biomedical Materials Research, 26, 7-18. doi:10.1002/jbm.820260103
[9] Edwards, J.T., Brunski, J.B. and Higuchi, H.W. (1997) Mechanical and morphologic investigation of the tensile strength of a bone hydroxyapatite interface. Journal of Biomedical Materials Research, 36, 454-468. doi:10.1002/(SICI)1097-4636(19970915)36:4<454::AID-JBM3>3.0.CO;2-D
[10] Gautier, S., Champion, E., Bernache-Assollant D. and Chartier T., (1999) Rheological characteristics of aluminia platelet-hydroxyapatite composite suspension. Journal of the European Ceramic Society, 19, 469-477. doi:10.1016/S0955-2219(98)00224-6
[11] Kong, Y., Kim, S., Kim H. and Lee, I. (1999) Reinforcement of hydroxyapatite bioceramics by addition of ZrO2 coated Al2O3. Journal of the European Ceramic Society, 82, 2963-2968. doi:10.1111/j.1151-2916.1999.tb02189.x
[12] Li, J., Hermansson L. and Soremark, R. (1993) High strength biofunctional zirconia: mechanical properties and static fatigue behaviour of zirconia–apatite composite. Journal of Materials Science: Materials in Medicine, 4, 50-54. doi:10.1007/BF00122977
[13] T. Kokubo, T. Matsushita and H. Takadama (2007) Titania-Based Bioactive Materials. Journal of the European Ceramic Society, 27, 1553-1558. doi:10.1016/j.jeurceramsoc.2006.04.015
[14] Vehof, J.W.M., Spauwen P.H.M. and Jansen, J.A. (2000) Bone formation in calcium-phosphate-coated titanium mesh. Biomaterials, 21, 2003-2009. doi:10.1016/S0142-9612(00)00094-6
[15] Miyazaki, T., Kim, H.M., Miyaji, F., Kokubo, T., Nakamura, T. (1997) Bioceramics 10. Elsevier Science LTD, New York.
[16] Kim, H.M., Miyaji, F., Kokubo, T., Nakamura, T. (1997) Apatite-forming ability of alkali-treated ti metal in body environment. Journal of the ceramic Society of Japan, 105, 111-116. doi:10.2109/jcersj.105.111
[17] Cortes, D.A., Escobedo, J.C., Nogiwa A. and Munoz, A. (2003) Biomimetic bonelike apatite coating on cobalt based alloys. Materials Science Forum, 442, 61-66. doi:10.4028/www.scientific.net/MSF.442.61
[18] Aboudi J., Pindera, M.-J. and Arnold, S.M. (2001) Linear thermoelastic higher-order theory for periodic multiphase materials,. Journal of Applied Mechanics, 68, 697-707. doi:10.1115/1.1381005
[19] De Groot, K., Geesink, R., Klein C. and Serekian, P. (1987) Plasma sprayed coatings of Hydroxyapatite. Journal of Biomedical Materials Research, 21, 1375- 1381. doi:10.1002/jbm.820211203
[20] Yang, Y.C. (2007) “Influence of residual stress on bonding strength of the plasma-sprayed hydroxyapatite coating after the vacuum heat treatment,” Surface and Coatings Technology, 201, 7187-7193. doi:10.1016/j.surfcoat.2007.01.027
[21] Chen C.C. and Ding, S.J. (2006) Effect of heat treatment on characteristics of plasma sprayed hydroxyapatite coatings. Materials Transactions, 47, 935-940. doi:10.2320/matertrans.47.935
[22] Yang, X.D., Lu, X., Zhang, Q.Y., Zhang, X.D., et al. (2007) BCP coatings on pure titanium plates by CD method. Materials Science and Engineering C, 27, 781- 786. doi:10.1016/j.msec.2006.08.011
[23] Ducheyne P.and Hasting, G.W. (1984) Metal and Ceramic Biomaterials. CRC Press, Boca Raton, 144-166.
[24] Byong-Taek, L., Min-Ho, Y., RajatKanti, P., Kap-Ho, L. and Ho-Yeon, S. (2007) In situ synthesis of spherical BCP nanopowders by microwave assisted process. Materials Chemistry and Physics, 104, 249-253. doi:10.1016/j.matchemphys.2007.02.009
[25] Cao, L., Zhang, C. and Huang, J. (2005) Synthesis of hydroxyapatite nanoparticles in ultrasonic precipitation. Ceramics International, 31, 1041-1044. doi:10.1016/j.ceramint.2004.11.002
[26] Choi, M. G. et al. (2005) Effects of titanium particle size on osteoblast functions in vitro and in vivo. PNAS, 102, 4578-4583. doi:10.1073/pnas.0500693102
[27] Ning C.Q. and Zhou, Y. (2004) On the microstructure of biocomposites sintered from Ti, HA and bioactive glass. Biomaterials, 25, 3379-3387. doi:10.1016/j.biomaterials.2003.10.017
[28] Reilly D.T. and Burstein, A. H. (1975) The elastic and ultimate properties of compact bone tissue. Journal of Biomechanics, 8, 393-396. doi:10.1016/0021-9290(75)90075-5
[29] Schmidt, C., Ignatius A.A. and Claes, L.E. (2001) Proliferation and differentiation parameters of humanosteoblasts on titanium and steel surfaces. Journal of Biomedical Materials Research, 54, 209-215. doi:10.1002/1097-4636(200102)54:2<209::AID-JBM7>3.0.CO;2-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.