HIV-1 Env gp120 C2V5 Potential N-Linked Glycosylation Site(s) (PNGs) Variations and Amino Acid Length Polymorphisms among Infected Family Members

Abstract

Objective: To ascertain the role of HIV-1 gp120 env PNGs variations and sequence length polymorphism following transmission events as possible supporting forensic evidence to determine directionality of HIV transmission. Method: An observational study of HIV-1 infected family members, where median and range values of the amino acid lengths and PNGs for the genotyped C2V5 region were calculated. Wilcoxon rank-sum test was used to determine differences in these parameters between different family members. Results: For heterosexual transmission, two mothers had longer C3 sequences relative to that of their spouses; p=0.006 and=0.025 whilst the opposite was observed for one mother, p = 0.028. No clear trends were observed for PNGs. Index children had longer C2V5 amino acid sequences compared to their mothers p = 0.013, 0.040, 0.043 for families 205, 375, 567 respectively. Second siblings “V4 and V5 sequences were generally shorter relative to the maternal ones p = 0.039 and 0.028, respectively. Adults had longer V3 amino acid sequences compared to children; p = 0.018. Similar trends were also observed regarding PNGs within the entire C2V5 region, C3 and V4 sub-regions; p= 0.0025, 0.005 and 0.008, respectively. First siblings’ C2V5 and C3 sequence lengths were significantly longer relative to those of the second siblings; p = 0.005 and 0.007, respectively. Conclusion: Our results are suggestive that HIV-1 env C2V5 amino acid length polymorphism and PNGs tend to increase with age and HIV disease progression. Though sensitive and should be cautiously handled, it is tempting to propose the direc-tionality of the HIV transmission events with respect to C3 sequence length polymorphisms. Correlating HIV-1 env C2V5 amino acid length polymorphism and age of infection may be the first step towards a possible valuable piece of forensic evidence which may be useful in criminalisation of willful HIV infections. However, bigger studies are war-ranted to substantiate the authenticity of this potentially useful application.

Share and Cite:

D. Kerina, F. Gumbo, K. Kristiansen, M. Mapingure, S. Rusakaniko, M. Chirenje, B. Stray-Pedersen and F. Müller, "HIV-1 Env gp120 C2V5 Potential N-Linked Glycosylation Site(s) (PNGs) Variations and Amino Acid Length Polymorphisms among Infected Family Members," Advances in Infectious Diseases, Vol. 1 No. 1, 2011, pp. 1-13. doi: 10.4236/aid.2011.11001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. R. Starcich, B. H. Hahn, G. M. Shaw, P. D. McNeely, S. Modrow, H. Wolf, et al., “Identification and Characterization of Conserved and Variable Regions in the Envelope Gene of HTLV-III/LAV, the Retrovirus of AIDS,” Cell, Vol. 45, No. 5, 1986, pp. 637-648
[2] H. Geyer, C. Holschbach, G. Hunsmann and J. Schneider, “Carbohydrates of Human Immunodeficiency Virus. Structures of Oligosaccharides Linked to the Envelope Glycoprotein 120,” The Journal of Biological Chemistry, Vol. 263, No. 24, 1988, pp. 11760-11767.
[3] M. Zhang, B. Gaschen, W. Blay, B. Foley, N. Haigwood, C. Kuiken, et al., “Tracking Global Patterns of N-Linked Glycosylation Site Variation in Highly Variable Viral Glycoproteins: HIV, SIV, and HCV Envelopes and influenza Hemagglutinin,” Glycobiology, Vol. 14, No. 12, 2004, pp. 1229-1246.
[4] C. K. Leonard, M. W. Spellman, L. Riddle, R. J. Harris, J. N. Thomas and T. J. Gregory, “Assignment of Intrachain Disulfide Bonds and Characterization of Potential Glycosylation Sites of the Type 1 Recombinant Human Immunodeficiency Virus Envelope Glycoprotein (gp120) Expressed in Chinese Hamster Ovary Cells,” The Journal of Biological Chemistry, Vol. 265, No. 18, 1990, pp. 10373-10382.
[5] P. D. Kwong, R. Wyatt, Q. J. Sattentau, J. Sodroski, W. A. Hendrickson, “Oligomeric Modeling and Electrostatic Analysis of the gp120 Envelope Glycoprotein of Human Immunodeficiency Virus,” The Journal of Virology, Vol. 74, No. 4, 2000, pp. 1961-1972. doi:10.1128/JVI.74.4.1961-1972.2000
[6] R. Wyatt, P. D. Kwong, E. Desjardins, R. W. Sweet, J. Robinson, W. A. Hendrickson, et al., “The Antigenic Structure of the HIV gp120 Envelope Glycoprotein,” Nature, 1998, Vol. 393, No. 6686, pp. 705-711.
[7] J. J. Skehel, D. J. Stevens, R. S. Daniels, A. R. Douglas, M. Knossow, I. A. Wilson, et al., “A Carbohydrate Side Chain on Hemagglutinins of Hong Kong Influenza Viruses Inhibits Recognition by a Monoclonal Antibody,” Proceedings of the National Academy of Sciences, Vol. 81, No. 6, 1984, pp. 1779-1783. doi:10.1073/pnas.81.6.1779
[8] P. Botarelli, B. A. Houlden, N. L. Haigwood, C. Servis, D. Montagna and S. Abrignani, “N-Glycosylation of HIV- gp120 May Constrain Recognition by T Lymphocytes,” The Journal of Immunology, Vol. 147, No. 9, 1991, pp. 3128-3132.
[9] Cheng-Mayer C., Brown A., Harouse J., Luciw P.A. and Mayer A.J., “Selection for Neutralization Resistance of the Simian/Human Immunodeficiency Virus SHIVSF33A Variant in vivo by Virtue of Sequence Changes in the Extracellular Envelope Glycoprotein that Modify N-Linked Glycosylation,” The Journal of Virology, Vol. 73, No. 7, 1999, pp. 5294-5300.
[10] X. Wei, J. M. Decker, S. Wang, H. Hui, J. C. Kappes, X. Wu, et al., “Antibody Neutralization and Escape by HIV-1,” Nature, Vol. 422, No. 6929, 2003, pp. 307-312. doi:10.1128/JVI.00141-06
[11] M. Sagar, X. Wu, S. Lee and J. Overbaugh, “Human Immunodeficiency Virus Type 1 V1-V2 Envelope Loop Sequences Expand and Add Glycosylation Sites over the Course of Infection, and These Modifications Affect Antibody Neutralization Sensitivity,” The Journal of Virology, 2006, Vol. 80, No. 19, pp. 9586-9598.
[12] E. M. Bunnik, L. Pisas, A. C. van Nuenen and H. Schuitemaker, “Autologous Neutralizing Humoral Immunity and Evolution of the Viral Envelope in the Course of Subtype B Human Immunodeficiency Virus Type 1 Infection,” The Journal of Virology, Vol. 82 No. 16, 2008, pp. 7932-7941. doi:10.1128/JVI.00757-08
[13] H. F. Gunthard, S. D. Frost, A. J. Leigh-Brown, C. C. Ignacio, K. Kee, A. S. Perelson, et al., “Evolution of Envelope Sequences of Human Immunodeficiency Virus Type 1 in Cellular Reservoirs in the Setting of Potent Antiviral Therapy,” The Journal of Virology, 1999, Vol. 73, No. 11, pp. 9404-9412
[14] C. A. Derdeyn, J. M. Decker, F. Bibollet-Ruche, J. L. Mokili, M. Muldoon, S. A. Denham, et al., “Envelope-Constrained Neutralization-Sensitive HIV-1 after Heterosexual Transmission,” Science, 2004, Vol. 303, No. 5666, pp. 2019-2022.
[15] B. Li, J.M. Decker, R. W. Johnson, F. Bibollet-Ruche, X. Wei, J. Mulenga, et al., “Evidence for Potent Autologous Neutralizing Antibody Titers and Compact Envelopes in Early Infection with Subtype C Human Immunodeficiency Virus Type 1,” The Journal of Virology, Vol. 80, No. 11, 2006, pp. 5211-5218. doi:10.1128/JVI.00201-06
[16] J. Irungu, E. P. Go, Y. Zhang, D. S. Dalpathado, H. X. Liao, B. F. Haynes, et al., “Comparison of HPLC/ESI- FTICR MS versus MALDI-TOF/TOF MS for Glycopeptide Analysis of a Highly Glycosylated HIV Envelope Glycoprotein,” Journal of the American Society for Mass Spectrometry, Vol. 19, No. 8, 2008, pp. 1209-1220. doi:10.1016/j.jasms.2008.05.010
[17] H. Zhang, D. C. Tully, F. G. Hoffmann, J. He, C. Kankasa and C. Wood, “Restricted Genetic Diversity of HIV-1 Subtype C Envelope Glycoprotein from Perinatally Infected Zambian Infants,” PLoS One, Vol. 5, No. 2, 2010, p. e9294. doi:10.1371/journal.pone.0009294
[18] M. Alexander, R. Lynch, J. Mulenga, S. Allen, C. A. Derdeyn and E. Hunter, “Donor and Recipient Envs from Heterosexual Human Immunodeficiency Virus Subtype C Transmission Pairs Require High Receptor Levels for Entry,” The Journal of Virology, Vol. 84, No. 8, 2010, pp. 4100-4104. doi:10.1128/JVI.02068-09
[19] M. Sagar, O. Laeyendecker, S. Lee, J. Gamiel, M. J. Wawer, R. H. Gray, et al., “Selection of HIV Variants with Signature Genotypic Characteristics during Heterosexual Transmission,” Journal of Infectious Diseases, Vol. 199, No. 4, 2009, pp. 580-589. doi:10.1086/596557
[20] Y. Liu, M. E. Curlin, K. Diem, H. Zhao, A. K. Ghosh, H. Zhu, et al., “Env Length and N-Linked Glycosylation Following Transmission of Human Immunodeficiency Virus Type 1 Subtype B Viruses,” Virology, Vol. 374, No. 2, 2008, pp. 229-233
[21] B. Chohan, D. Lang, M. Sagar, B. Korber, L. Lavreys, B. Richardson, et al., “Selection for Human Immunodeficiency Virus Type 1 Envelope Glycosylation Variants with Shorter V1-V2 Loop Sequences Occurs during Transmission of Certain Genetic Subtypes and May Impact Viral RNA Levels,” The Journal of Virology, 2005, Vol. 79, No. 10, pp. 6528-6531. doi:10.1128/JVI.79.10.6528-6531.2005
[22] T. Dieltjens, N. Loots, K. Vereecken, K. Grupping, L. Heyndrickx, E. Bottieau, et al., “HIV Type 1 Subtype A Envelope Genetic Evolution in a Slow Progressing Individual with Consistent Broadly Neutralizing Antibodies,” AIDS Research and Human Retroviruses, Vol. 25, No. 11, 2009, pp. 1165-1169. doi:10.1089/aid.2008.0161
[23] Y. Ye, Z. H. Si, J. P. Moore and J. Sodroski, “Association of Structural Changes in the V2 and V3 Loops of the gp120 Envelope Glycoprotein with Acquisition of Neutralization Resistance in a Simian-Human Immunodeficiency Virus Passaged in vivo,” The Journal of Virology, Vol. 74, No. 24, 2000, pp. 11955-11962. doi:10.1128/JVI.74.24.11955-11962.2000
[24] Y. Li, M. A. Rey-Cuille and S. L. Hu, “N-Linked Glycosylation in the V3 Region of HIV Type 1 Surface Antigen Modulates Coreceptor Usage in Viral Infection,” AIDS Research and Human Retroviruses, Vol. 17, No. 16, 2001, pp. 1473-1479. doi:10.1089/08892220152644179
[25] R. M. Lynch, T. Shen, S. Gnanakaran and C. A. Derdeyn, “Appreciating HIV Type 1 Diversity: Subtype Differences in Env,” AIDS Research and Human Retroviruses, Vol. 25, No. 3, 2009, pp. 237-248. doi:10.1089/aid.2008.0219
[26] C. N. Scanlan, J. Offer, N. Zitzmann and R. A. Dwek, “Exploiting the Defensive Sugars of HIV- 1 for Drug and Vaccine Design,” Nature, Vol. 446, No. 7139, 2007, pp. 1038-1045.
[27] F. Z. Gumbo, G. Q. Kandawasvika, K. Duri, M. P. Mapingure, N. E. Kurewa, K. Nathoo, et al., “Reduced HIV Transmission at Subsequent Pregnancy in a Resource-Poor Setting,” Tropical Doctor, Vol. 41, No. 3, 2011, pp. 132-135.
[28] K. Duri, W. Soko, F. Gumbo, K. Kristiansen, M. Mapingure, B. Stray-Pedersen, et al., “Genotypic Analysis of Human Immunodeficiency Virus Type 1 Env V3 Loop Sequences: Bioinformatics Prediction of Coreceptor Usage among 28 Infected Mother-Infant Pairs in a Drug-Naive Population,” AIDS Research and Human Retroviruses, Vol. 27, No. 4, 2011, pp. 411-419. doi:10.1089/aid.2010.0142
[29] R. G. Spiro, “Protein glycosylation: Nature, Distribution, Enzymatic Formation, and Disease Implications of Glycopeptide Bonds,” Glycobiology, Vol. 12, No. 4, 2002, pp. 43R-56R.
[30] S. Gnanakaran, D. Lang, M. Daniels, T. Bhattacharya, C. A. Derdeyn and B. Korber, “Clade-Specific Differences between Human Immunodeficiency Virus Type 1 Clades B and C: Diversity and Correlations in C3-V4 Regions of gp120,” The Journal of Virology, Vol. 81, No. 9, 2007, pp. 4886-4891. doi:10.1128/JVI.01954-06
[31] N. Chomont, H. Hocini, G. Gresenguet, C. Brochier, H. Bouhlal, L. Andreoletti, et al., “Early Archives of Genetically-Restricted Proviral DNA in the Female Genital Tract after Heterosexual Transmission of HIV-1,” AIDS, Vol. 21, No. 2, 2007, pp. 153-162.
[32] K.S. Kemal, B. Foley, H. Burger, K. Anastos, H. Minkoff, C. Kitchen, et al., “HIV-1 in Genital Tract and Plasma of Women: Compartmentalization of Viral Sequences, Coreceptor Usage, and Glycosylation,” Proceedings of the National Academy of Sciences , Vol. 100, No. 22, 2003, pp. 12972-12977. doi:10.1073/pnas.2134064100
[33] S. K. Pillai, B. Good, S. K. Pond, J. K. Wong, M. C. Strain, D. D. Richman, et al., “Semen-Specific Genetic Characteristics of Human Immunodeficiency Virus Type 1 Env,” The Journal of Virology, Vol. 79, No. 3, 2005, pp. 1734-1742. doi:10.1128/JVI.79.3.1734-1742.2005
[34] F. Y. Tso, F.G. Hoffmann, D. C. Tully, P. Lemey, R. A. Rasmussen, H. Zhang, et al., “A Comparative Study of HIV-1 Clade C Env Evolution in a Zambian Infant with an Infected Rhesus Macaque during Disease Progression,” AIDS, Vol. 23, No. 14, 2009, pp. 1817-1828.
[35] H. Zhang, F. Hoffmann, J. He, X. He and C. Kankasa, J. T. West, et al., “Characterization of HIV-1 Subtype C envelope Glycoproteins from Perinatally Infected Children with Different Courses of Disease,” Retrovirology, Vol. 3, 2006, p. 73.
[36] B. T. Korber, K. MacInnes, R. F. Smith and G. Myers, “Mutational Trends in V3 Loop Protein Sequences Observed in Different Genetic Lineages of Human Immunodeficiency Virus Type 1,” The Journal of Virology, Vol. 68, No. 10, 1994, pp. 6730-6744.
[37] M. B. Patel, N. G. Hoffman and R. Swanstrom, “Subtype-Specific Conformational Differences within the V3 Region of Subtype B and Subtype C Human Immunodeficiency Virus Type 1 Env Proteins,” The Journal of Virology, Vol. 82, No. 2, 2008, pp. 903-916. doi:10.1128/JVI.01444-07
[38] R. L. Stanfield, M. K. Gorny, S. Zolla-Pazner and I. A. Wilson, “Crystal Structures of Human Immunodeficiency Virus Type 1 (HIV-1) Neutralizing Antibody 2219 in Complex with Three Different V3 Peptides Reveal a New Binding Mode for HIV-1 Cross-Reactivity,” The Journal of Virology, Vol. 80, No. 12, 2006, pp. 6093-6105. doi:10.1128/JVI.00205-06
[39] P. B. Gilbert, V. Novitsky and M. Essex, “Covariability of Selected Amino Acid Positions for HIV Type 1 Subtypes C and B,” AIDS Research and Human Retroviruses, Vol. 21, No. 12, 2005, pp. 1016-1030. doi:10.1089/aid.2005.21.1016
[40] K. A. Buckley, P. L. Li, A. H. Khimani, R. Hofmann-Lehmann, V. Liska, D. C. Anderson, et al., “Convergent Evolution of SIV Env after Independent Inoculation of Rhesus Macaques with Infectious Proviral DNA,” Virology, Vol. 312, No. 2, 2003, pp. 470-480.
[41] S. D. Frost, Y. Liu, S. L. Pond, C. Chappey, T. Wrin, C. J. Petropoulos, et al., “Characterization of Human Immunodeficiency Virus Type 1 (HIV-1) Envelope Variation And Neutralizing Antibody Responses during Transmission of HIV-1 Subtype B,” The Journal of Virology, Vol. 79, No. 10, 2005, pp. 6523-6527. doi:10.1128/JVI.79.10.6523-6527.2005

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.