Unsaturated Keto and Exomethylene Pyranonucleoside Analogues of Thymine and Uracil Exhibit Potent Antioxidant Properties

Abstract

Nucleoside analogues play an important role in the development of antitumor and antiviral agents. Specific sugar modified pyranonucleosides, like the keto and exocyclic methylene nucleosides, have been studied for their biological properties, but there is little information regarding their antioxidant activity. The present study reports the antioxidant activity of a series of α,β-unsaturated 2’- or 4’ - keto and exomethylene 5’-hydroxymethyl-lacking pyranonucleosides. The antioxidant activity was evaluated using an in vitro assay which is based on the capacity to protect DNA strand scission induced by peroxyl radicals (ROO?). The majority of the tested nucleoside analogues exhibit potent antioxidant properties against ROO? radicals. We conclude that the presence of a carbon-carbon double bond at α,β-disposition to exomethylene group at position 2 of the sugar moiety and the substitution of thymine with uracil improves the antioxidant capacity of these analogues.

Share and Cite:

C. Spanou, N. Tzioumaki, S. Manta, P. Margaris, D. Kouretas, D. Komiotis and K. Liadaki, "Unsaturated Keto and Exomethylene Pyranonucleoside Analogues of Thymine and Uracil Exhibit Potent Antioxidant Properties," Pharmacology & Pharmacy, Vol. 2 No. 3, 2011, pp. 122-126. doi: 10.4236/pp.2011.23016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Gumina, Y. Chong, H. Choo, G. Song and C. K Chu, “L-nucleosides: antiviral activity and molecular mechan- icsm,” Current Topics in Medicinal Chemistry, Vol. 2, No. 10, 2002, pp.1065-1086.
[2] D. C. Orr, H. T. Figueiredo, C. L. Mo, C. R. Penn and J. M. Cameron, “DNA chain termination activity and inhibition of human immunodeficiency virus reverse transcriptase by carbocyclic 2’,3’-didehydro-2',3'-dideoxy- guanosine triphosphate,” Journal of Biological Chemistry, Vol. 267, No. 6, 1992, pp.4177-4182.
[3] M. A. Turner, X. Yang, D. Yin, K. Kuczera, R. T. Borchardt and P. L. Howell, “Structure and function of S- adenosylhomocysteine hydrolase,” Cell Biochemistry and Biophysics, Vol. 33, No. 2, 2000, pp.101-125.
[4] Y. Kitade, A. Kozaki, T. Miwa and M. Nakanishi, “Syn- thesis of base-modified noraristeromycin derivatives and their inhibitory activity against human and Plasmodium falciparum recombinant S-adenosyl- -homocysteine hydrolase,” Tetrahedron, Vol. 58, Iss.7, 2002, pp. 1271- 1277.
[5] K. S. Anderson, “Perspectives on the molecular mechan- icsm of inhibition and toxicity of nucleoside analogs that target HIV-1 reverse transcriptase,” Biochimica et Bio- physica Acta, Vol. 1587, Issues 2-3, 2002, pp. 296-299.
[6] G. Maga and S. Spadari, “Combinations against combina- tions: associations of anti-HIV 1 reverse transcriptase drugs challenged by constellations of drug resistance mutations,” Current Drug Metabolism, Vol. 3, No. 1, 2002, pp. 73-96.
[7] M. J. Egron, F. Leclercq, K. Antonakis, I. Bennani-Baiti and C. Frayssinet, “Synthesis and antineoplastic proper- ties of 3'-deoxy-3'-fluoroketonucleoside derivatives. Cor- relations between structure and biological activity,” Car- bohydrate Research, Vol. 248, 1993, pp 143-150.
[8] M. Alaoui, M. J. Egron, M. Bessodes, K. Antonakis and I. Chouroulinkov, “Relationship between the structure and cytotoxic activity of new unsaturated ketonucleosides tested on eight cell lines,” European Journal of Medicinal Chemistry, Vol. 22, Iss. 4, 1987, pp. 305-310.
[9] F. Leclercq and K. Antonakis, “Unsaturated ketonucleo- tides: synthesis of and anomers of 1-(2,3-dide- oxy-6-O-diethoxyphosphoryl-D-glycero-hex-2-enopyra- nosyl-4-ulose) thymine,” Carbohydrate Research, Vol. 263, Iss. 2, 1994, pp. 309-313.
[10] G. S. Bisacchi, S. T. Chao, C. Bachard, J. P. Daris, S. Innaimo, G. A. Jacobs, O. Kocy, P. Lapointe, A. Martel, Z. Merchant, W. A. Slusarchyk, J. E. Sundeen, M. G. Young, R. Colonno, and R. Zahler, “BMS-200475, a novel carbocyclic 2′-deoxyguanosine analog with potent and selective anti-hepatitis B virus activity in vitro,” Bioorganic & Medicinal Chemistry Letters, Vol. 7, Iss. 2, 1997, pp. 127-132.
[11] S. J. Yoo, H. O. Kim, Y. Lim, J. Kim and L. S. Jeong, “Synthesis of novel (2R,4R)- and (2S,4S)-iso-dide- oxynucleosides with exocyclic methylene as potential antiviral agents,” Bioorganic & Medicinal Chemistry, Vol. 10, No. 1, 2002, pp. 215-226.
[12] P. Gunaga, M. Baba and L. S. Jeong, “Asymmetric syn- thesis of novel thioisodideoxynucleosides with exocyc- lic methylene as potential antiviral agents,” Journal of Organic Chemistry, Vol. 69, No. 9, 2004, pp. 3208-3211.
[13] S. Manta, G. Agelis, T. Boti?, A. Cenci? and D. Komiotis, “Fluoro-ketopyranosyl nucleosides: synthesis and bio- logical evaluation of 3-fluoro-2-keto-β-D-glucopyranosyl derivatives of N4-benzoyl cytosine,” Bioorganic & Medicinal Chemistry, Vol. 15, No. 2, 2007, pp. 980-987.
[14] S. Manta, G. Agelis, T. Boti?, A. Cenci? and D. Komiotis, “Unsaturated fluoro-ketopyranosyl nucleosides: synthesis and biological evaluation of 3-fluoro-4-keto-β-D-glu- copyranosyl derivatives of N4-benzoyl cytosine and N6- benzoyl adenine,” European Journal of Medicinal Chem- istry, Vol. 43, No. 2, 2008, pp. 420-428.
[15] S. Manta, E. Tsoukala, N. Tzioumaki, A. Goropev?ek, R. T. Pamulapati, A. Cenci?, J. Balzarini and D. Komiotis, “Dideoxy fluoro-ketopyranosyl nucleosides as potent an- tiviral agents: synthesis and biological evaluation of 2,3- and 3,4-dideoxy-3-fluoro-4- and -2-keto-β-D-glucopyra- nosyl derivatives of N4-benzoyl cytosine,” European Journal of Medicinal Chemistry, Vol. 44, No. 6, 2009, pp. 2696-2704.
[16] G. Agelis, N. Tzioumaki, T. Boti?, A. Cenci? and D. Komiotis, “Exomethylene pyranonucleosides: efficient synthesis and biological evaluation of 1-(2,3,4-trideoxy- 2-methylene-β-D-glycero-hex-3-enopyranosyl)thymine,” Bioorganic and Medicinal Chemistry, Vol. 15, No. 16, 2007, pp. 5448-5456.
[17] G. Agelis, N. Tzioumaki, T. Tselios, T. Boti?, A. Cenci? and D. Komiotis, “Synthesis and molecular modelling of unsaturated exomethylene pyranonucleoside analogues with antitumor and antiviral activities,” European Journal of Medicinal Chemistry, Vol. 43, No. 7, 2008, pp. 1366- 1375.
[18] N. Tzioumaki, E. Tsoukala, S. Manta, G. Agelis, J. Bal- zarini and D. Komiotis, “Synthesis, antiviral and cy- tostatic evaluation of unsaturated exomethylene and keto D-lyxopyranonucleoside analogues,” Archiv der Pharmazie, Vol. 342, No. 6, 2009, pp. 353-360.
[19] C. Spanou, S. Manta, D. Komiotis, A. Dervishi and D. Kouretas, “Antioxidant Activity of a Series of Fluori- nated Pyrano-nucleoside Analogues of N4-benzoyl Cyto- sine and N6-benzoyl Adenine,” International Journal of Molecular Sciences, Vol. 8, No. 7, 2007, pp. 695-704.
[20] S. Manta, N. Tzioumaki, E. Tsoukala, A. Panagiotopou- lou, M. Pelecanou, J. Balzarini and D. Komiotis, “Un- saturated dideoxy fluoro-ketopyranosyl nucleosides as new cytostatic agents: a convenient synthesis of 2,6- dideoxy-3-fluoro-4-keto-β-D-glucopyranosyl analogues of uracil, 5-fluorouracil, thymine, N4-benzoyl cytosine and N6-benzoyl adenine,” European Journal of Medicinal Chemistry, Vol. 44, No. 11, 2009, pp. 4764-4771.
[21] S. Manta, E. Tsoukala, N. Tzioumaki, C. Kiritsis, J. Balzarini and D. Komiotis, “Synthesis of 4,6-dideoxy-3- fluoro-2-keto-β-D-glucopyranosyl analogues of 5-fluo- rouracil, N6-benzoyl adenine, uracil, thymine, N4-ben- zoyl cytosine and evaluation of their antitumor activi- ties,” Bioorganic Chemistry, Vol. 38, No. 2, 2010, pp 48- 55.
[22] N. Tzioumaki, S. Manta, E. Tsoukala, J. V. Voorde, S. Liekens, D. Komiotis and J. Balzarini, “Synthesis and biological evaluation of unsaturated keto and exomethylene D-arabinopyranonucleoside analogues: Novel 5-Fluo- rouracil analogues that target thymidylate synthase,” European Journal of Medicinal Chemistry, Vol. 46, No. 4, 2011, pp. 993-1005.
[23] S. T. Chang, J. H. Wu, S. Y. Wang, P. L. Kang, N. S. Yang and L. F. Shyur, “Antioxidant activity of extracts from Acacia confusa bark and heartwood,” Journal of Agricultural and Food Chemistry, Vol. 49, No. 7, 2001, pp. 3420-3424.
[24] C. Mylonas and D. Kouretas, “Lipid peroxidation and tissue damage,” In vivo, Vol. 13, No. 3, 1999, pp. 295- 310.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.