Physical Study of Thin Film and Monolithic Nano-Composites [SiO2: 11P2O5: 3 Al2O3: (1.2) Er (1.2, 1.8 and 3) Yb] Prepared by Sol Gel Technique, Planar Waveguide and Co-Operative Up-Conversion
Y. Badr, I. K. Battisha, A. M. S. El Nahrawy, M. Kamal
.
DOI: 10.4236/njgc.2011.12012   PDF    HTML     4,628 Downloads   9,138 Views   Citations

Abstract

Nano-composite silica-phosphate system (SiO2- P2O5) co-doped with Al2O3 as a host material and prepared by sol gel technique in two forms monolith and thin film using multilayer spin-coating method were activated by Er3+ and Yb3+ ions as in the formula;[SiO2: 11P2O5: 3 Al2O3: (1.2) Er: (1.2, 1.8 and 3) Yb]. The prepared samples have been synthesized using tetra-ethyl-orthosilicate (TEOS) and triethyl-phosphate (TEP) as precursor sources of silica and phospho-rus oxides. The microstructure and crystallinity of the prepared samples will be characterized by using x-ray diffraction (XRD) which, imply that the crystallite sizes of [SiO2: 11P2O5: 3 Al2O3: (1.2) Er: (1.2) Yb] at 500oC for both thin film and monolith forms of the prepared samples were found to be equal to 35 and 33 nm, respectively. The refractive index will be evaluated by measuring the normal transmission and specular reflection of the prepared samples. The photolu-minescence properties have analyzed in the visible wavelength range between 500 and 800 nm as a function of sample composition.

Share and Cite:

Y. Badr, I. Battisha, A. Nahrawy and M. Kamal, "Physical Study of Thin Film and Monolithic Nano-Composites [SiO2: 11P2O5: 3 Al2O3: (1.2) Er (1.2, 1.8 and 3) Yb] Prepared by Sol Gel Technique, Planar Waveguide and Co-Operative Up-Conversion," New Journal of Glass and Ceramics, Vol. 1 No. 2, 2011, pp. 69-78. doi: 10.4236/njgc.2011.12012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. Barbier, “Integrated Optical Circuits and Components: Design and Applications,” Dekker, New York, 1999.
[2] N. N. Khimich, G. M. Berdichevskii, E. N. Poddenezhnyi, V. V. Golubkov, A. A. Boiko, V. M. Ken’ko, O. B. Evreinov and L. A. Koptelova, “Sol-Gel Synthesis of an Optical Silica Glass Doped with Rare-Earth Elements,” Glass Physics and Chemistry, Vol. 33, No. 2, 2007, pp. 152-155. doi:10.1134/S1087659607020095
[3] C. J. Brinker, A. J. Hurd, P. R. Schunk, G. C. Frye and C. S. Ashley, “Review of Sol Gel Thin Film Formation,” Journal of Non-Crystalline Solids, Vol. 147-148, 1992, pp. 424-436. doi:10.1016/S0022-3093(05)80653-2
[4] B. E. Yoldas and I. K. Lloyd, “Nasicon Formation by Chemical Polymerization,” Materials Research Bulletin, Vol. 18, No. 10, 1983, pp. 1171-1177. doi:10.1016/0025-5408(83)90019-3
[5] I. K. Battisha, M. A. Salem, A. M. S. El Nahrawy, Y. Badr, M. Kamal and B. Elouady, “Erbium Activated Monolith Silica-Phosphate Glasses Planar Waveguide and Up-Conversion Mechanism,” International Journal of Nano and Biomaterials, Vol. 2, No. 1-5, 2009, pp. 191-203.
[6] A. J. Silversmith, N. T. T. Nguyen, B. W. Sullivan, D. M. Boye, C. Ortiz and K. R. Hoffman, “Rare-Earth Ion Distribution in Sol-Gel Glasses Co-Doped with Al3+,” Journal of Luminescence, Vol. 128, No. 5-6, 2008, pp. 931-933. doi:10.1016/j.jlumin.2007.11.049
[7] Z. Xiao, B. Zhou, L. Yan, F. Zhu, F. Zhang and A. Huang, “Photoluminescence and Energy Transfer Processes in Rare Earth Ion Doped Oxide Thin Films with Substrate Heating,” Physics Letters A, Vol. 374, No. 10, 2010, pp. 1297-1300. doi:10.1016/j.physleta.2010.01.017
[8] A. Martucci, A. Chiasera, M. Montagna and M. Ferrari, “Erbium-Doped GeO2-TiO2 Sol-Gel Waveguides,” Journal of Non-Crystalline Solids, Vol. 322, No. 1-3, 2003, pp. 295-299. doi:10.1016/S0022-3093(03)00218-7
[9] B. Y. Ahn, S. I. Seok, S. Hong, J. S. Oh, H. Jung and W. J. Chung, “Optical Properties of Organic/Inorganic Nanocomposite Sol-Gel Films Containing LaPO4: Er, Yb Nanocrystals,” Optical Materials, Vol. 28, No. 4, 2006, pp. 374-379. doi:10.1016/j.optmat.2005.02.003
[10] R. Almeida, X. Min du, D. Barbier and X. Orignc, “Er3+-Doped Multicomponent Silicate Glass Planar Waveguides Prepared by Sol-Gel Processing,” Journal of Sol-Gel Science and Technology, Vol. 14, No. 2, 1999, pp. 209-216. doi:10.1023/A:1008794202103
[11] M. J. F. Digonnet, “Rare-Earth-Doped Fiber Lasers and Amplifiers,” 2nd Edition, Dekker, New York, 2001. doi:10.1201/9780203904657
[12] M. J. F. Digonnet and E. Snitzer, “In Rare Earth Doped Fiber Lasers and Amplifiers,” In: M. J. F. Digonnet, Ed., Marcel Dekker, New York, 1993, Chapter 5.
[13] Ph. Massiot, M. A.Centeno, I. Carrizosa and J. A. Odriozola, “Thermal Evaluation of Sol-Gel-Obtained Phosphosilicate Solids (Sipo),” Journal of Non-Crystalline Solids, Vol. 292, 2001, pp. 158-166. doi:10.1016/S0022-3093(01)00854-7
[14] T. L. Weeding, B. H. W. S. de Jong, W. S. Veeman and B. G. Aitken, Nature (London), 1982, 318, 352. doi:10.1038/318352a0
[15] Ph. Massiot, M. A Centeno, M. Gouriou, M. I. Dominguez and J. A. Odriozola, “Sol-Gel Obtained Silicophosphates as Materials to Retain Caesium at High Temperatures,” Journal of Materials Chemistry, Vol. 13, No. 1, 2003, pp. 67-74. doi:10.1039/b208698k
[16] S. P. Szu, L. C. Klein and M. Greenblatt, “Effect of Precursors on the Structure of Phosphosilicate Gels: 29Si and 31P MAS-NMR Study,” Journal of Non-Crystalline Solids, Vol. 143, 1992, pp. 21-30. doi:10.1016/S0022-3093(05)80548-4
[17] D. Qiu, P. Guerry, J. C. Knowles, M. E. Smith and R. J. Newport, “Formation of Functional Phosphosilicate Gels from Phytic Acid and Tetraethyl Orthosilicate,” Journal of Sol-Gel Science and Technology, Vol. 48, No. 3, 2008, pp. 378-383. doi:10.1007/s10971-008-1818-9
[18] R. P. Rao and D. J. Devine, “RE-Activated Lanthanide Phosphate Phosphors for PDP Applications,” Journal of Luminescence, Vol. 87-89, 2000, pp. 1260-1263. doi:10.1016/S0022-2313(99)00551-7
[19] J. Dhanaraj, M. Geethalakshmi, R. Jagannathan and T. R. N. Kutty, “Eu3+-Doped Yttrium Oxysulfide Nanocrystals—Crystallite Size and Luminescence Transition(s),” Journal of Chemical Physics Letters, Vol. 387, No. 1-3, 2004, pp. 23-28. doi:10.1016/j.cplett.2004.01.079
[20] J. A. Sampaio, M. L. Baesso, S. Gama, A. A. Coelho, J. A. Eiras and I. A. Santos, “Rare Earth Doping Effect on the Elastic Moduli of Low Calcium Aluminosilicate Glasses,” Journal of Non-Crystalline Solids, Vol. 304, No. 1-4, 2002, pp. 293-298. doi:10.1016/S0022-3093(02)01037-2
[21] M. T. Wang and J. S. Cheng, “Viscosity and Thermal Expansion of Rare Earth Containing Soda-Lime-Silicate Glass,” Journal of Alloys and Compounds, Vol. 504, No. 1, 2010, pp. 273-276. doi:10.1016/j.jallcom.2010.08.134
[22] N. Kitamura, K. Fukumi, J. Nishii and N. Ohno, “Relationship between Refractive Index and Density of Synthetic Silica Glasses,” Journal of Non-Crystalline Solids, Vol. 101, No. 12, 2009, pp. 123533-123540.
[23] S. Shen, W. H. Chow, D. P. Steenson and A. Jha, “Fabrication of Er3+-Doped Oxyfluoride-Silicate Glass Film by Pulsed Laser Deposition for Planar Amplifier,” Journal of Non-Crystalline Solids, Vol. 355, No. 37-42, 2009, pp. 1893-1896.
[24] E. T. Y. Lee and E. R. M. Taylor, “Compositional Effects on the Optical and Thermal Properties of Potassium Aluminophosphate Glasses,” Optical Materials, Vol. 27, No. 2, 2004, pp. 323-330. doi:10.1016/j.optmat.2004.02.029
[25] S. N. Houde-Walter, P. M. Peters, J. F. Stebbins and Q. Zeng, “Hydroxyl-Contents and Hydroxyl-Related Concentration Quenching in Erbium Doped Aluminophosphate, Aluminosilicate and Fluorosilicate Glasses,” Journal of Non-Crystalline Solids, Vol. 286, No. 1-2, 2001, pp. 118-131. doi:10.1016/S0022-3093(00)00445-2
[26] P. Yang, M. K. Lu, C. F. Song, D. Xu, D. R. Yuan and F. Gu, “Photoluminescence Properties of Alkaline Metallic Ions Doped Sol-Gel Silica Glasses,” Materials Science & Engineering, Vol. B90, No. 1-2, 2002, pp. 99-102. doi:10.1016/S0921-5107(01)00929-1
[27] V. Y. Timoshenko, D. M. Zhigunov, P. K. Kashkarov, O. A. Shalygina, S. A. Teterukov, R. J. Zhang, M. Zacharias, M. Fujii and Sh. Hayashi, “Photoluminescence Properties of Erbium-Doped Structures of Silicon Nanocrystals in Silicon Dioxide Matrix,” Journal of Non-Crystalline Solids, Vol. 352, No. 9-20, 2006, pp. 1192-1195.
[28] V. V. Filippov, P. P. Pershukevich, V. V. Kuznetsova and V. S. Homenko, “Photoluminescence Excitation Properties of Porous Silicon with and without Er3+-Yb3+-Containing Complex,” Journal of Luminescence, Vol. 99, No. 3, 2002, pp. 185-195.
[29] C. Li, B. Dong, S. Li and C. Song, “Er3+-Yb3+ Co-Doped Silicate Glass for Optical Temperature Sensor,” Chemical Physics Letters, Vol. 443, No. 4-6, 2007, pp. 426-429.
[30] R. M. Almeida, A. C. Marques and S. Portal, “Glassy and Nano-Crystalline Photonic Materials and Structures by Sol-Gel,” Optical Materials, Vol. 27, No. 11, 2005, pp. 1718-1725.
[31] J. Z. Wang, Z. Q. Shi, Y. Shi, L. Pu, L. J. Pan, R. Zhang, Y. D. Zheng, Z. S. Tao and F. Lu, “Broad Excitation of Er Luminescence in Er-Doped HfO2 Films,” Applied Physics A, Vol. 94, No. 2, 2009, pp. 399-403.
[32] B. Dong, C. R. Li and M. K. Lei, “Green and Red Up-Conversion Emissions of Er3+-Yb3+ Codoped Al2O3 Powders Prepared by the Nonaqueous Sol-Gel Method,” Journal of Luminescence, Vol. 126, No. 2, 2007, pp. 441-446.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.