Share This Article:

Fine Structure Calculations of Atomic Data for Ar XVI

Abstract Full-Text HTML XML Download Download as PDF (Size:382KB) PP. 1609-1630
DOI: 10.4236/jmp.2015.611163    4,966 Downloads   5,289 Views   Citations
Author(s)    Leave a comment


Fine structure energy levels, wavelengths, log gf and allowed transition probabilities (E1) have been calculated for Lithium-like Ar XVI. The optimized electrostatic parameters by a least square approach, have been used in the calculation to include the configuration interaction and relativistic effects. A total number of 69 Ar XVI levels having total angular momenta, 1/2 ≤ J ≤ 9/2 of even and odd parities, orbital angular momenta 2 ≤ l ≤ 4, with 546 E1 transitions for 6 ≤ n ≤ 10 are considered using the relativistic effect in the Breit-Pauli method, where n is the principal quantum number. A comparison is made with the available results in literature.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Refaie, A. (2015) Fine Structure Calculations of Atomic Data for Ar XVI. Journal of Modern Physics, 6, 1609-1630. doi: 10.4236/jmp.2015.611163.


[1] Schlesser, S., Boucard, S., Covita, D.S., dos Santos, J.M.F., Fuhrmann, H., Gotta, D., Gruber, A., Hennebach, M., Hirtl, A., Indelicato, P., Le Bigot, E.-O., Simons, L.M., Stingelin, L., Trassinelli, M., Veloso, J.F.C.A., Wasser, A. and Zmeskal, J. (2013) Physical Review A, 88, Article ID: 022503.
[2] Natarajan, L. (2013) Physical Review A, 88, Article ID: 052522.
[3] Guerra, M., Amaro, P., Szabo, C.I., Gumberidze, A., Indelicato, P. and Santos, J.P. (2013) Journal of Physics B, 46, Article ID: 065701.
[4] Saloman, E.B. (2010) Journal of Physical and Chemical Reference Data, 39, Article ID: 033101.
[5] Lepson, J.K., Beiersdorfer, P., Behar, E. and Kahn, S.M. (2003) The Astrophysical Journal, 590, 604-617.
[6] Aggarwal, K.M. and Keenan, F.P. (2013) Atomic Data and Nuclear Data Tables, 99, 156-248.
[7] Lowe, J.A., Chantler, C.T. and Grant, I.P. (2013) Radiation Physics and Chemistry, 85, 118-123.
[8] Yerokhin, V.A. and Surzhykov, A. (2012) Physical Review A, 86, Article ID: 042507.
[9] Liu, S.-Z., Xie, L.-Y., Ding, X.-B. and Dong, C.-Z. (2012) Acta Physica Sinica, 61, Article ID: 093106.
[10] Natarajan, L., Natarajan, A. and Kadrekar, R. (2010) Physical Review A, 82, Article ID: 062514.
[11] Nahar, S.N. (2002) Astronomy & Astrophysics, 389, 716-728.
[12] Hu, M.-H. and Wang, Z.-W. (2009) Chinese Physics B, 18, 2244-2249.
[13] Zhu, J.J., Gou, B.C. and Wang, Y.D. (2008) Journal of Physics B, 41, Article ID: 065702.
[14] Liang, G.Y. and Badnell, N.R. (2011) Astronomy & Astrophysics, 528, A69.
[15] Sobel’man, I.I. (1979) Introduction to the Theory of Atomic Spectra. International Series of Monographs in National Philosophy, Pergamon Press, Oxford.
[16] Fischer, C.F., Brage, T. and Jönsson, P. (2000) Computational Atomic Structure. Institute of Physics Publishing, Bristol and Philadelphia.
[17] Cowan, R.D. (1981) The Theory of Atomic Structure and Spectra. University of California Press, Berkeley.
[18] Sobel’man, I.I. (1979) Atomic Spectra and Radiative Transitions. Springer, Berlin.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.