Frequency sensitivity of nanosecond pulse EMF on regrowth and hsp70 levels in transected planaria

Abstract

Purpose: To study the effect of time varying/ pulsing electromagnetic fields (PEMF) on bio-logical systems by measuring regrowth and the induction of elevated levels of the stress protein hsp70 in the regenerative model Planaria Duge-sia dorotocethala. Objective: The outcomes of studies using electromagnetic fields (EMF) are dependent on pulse design, field strength (mG), frequency (Hz), duration and magnetic field/rise time (dB/ dt). Standardization of effective pulse design is necessary to avoid continuing confu-sion in the investigation of pulsing electro-magnetic field (PEMF) technology. Information from studies on hsp70 protein induction and regrowth in transected Planaria provides in-formation on EMF efficacy for potential clinical application in the treatment of ischemia reper-fusion injury and the eventual inclusion of EMF prophylaxis prior to surgery. Materials and methods: Planaria were transected equidistant between the tip of the head and the tip of the tail. Individual head and tail portions from the same worm were placed in pond water and exposed to 8, 16 or 72 Hertz PEMF for one hour daily post transection under carefully controlled exposure conditions. Regrowth of heads and tails was measured in PEMF-exposed and sham control. Protein lysates from PEMF-exposed and sham control transected heads and tails were ana-lyzed for hsp70 levels by Wes¥tern blot analy-ses. Conclusion: The degree of regrowth and hsp70 levels in transected heads and tails ex-posed to nanosecond PEMF exposures at 8, 16 or 72 Hz was frequency dependent. There are currently several views on the interaction mechanism involved in regrowth. Here we dis-cuss two: in one [7,8] we propose a direct effect on the DNA of the PEMF consensus sequence, nCTCTn, referred to as electromagnetic field response elements (EMRE) in the promoter re-gion of the stress response gene HSP70. In the second mechanism [28] it is proposed that EMF induce vibrations of proteins through a series of quantized low frequency phonon signals.

Share and Cite:

Madkan, A. , Lin-Ye, A. , Pantazatos, S. , S. Geddis, M. , Blank, M. and Goodman, R. (2009) Frequency sensitivity of nanosecond pulse EMF on regrowth and hsp70 levels in transected planaria. Journal of Biomedical Science and Engineering, 2, 227-238. doi: 10.4236/jbise.2009.24036.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Agata, (2003) Regeneration and gene regulation in planarians, Curr Opin Genet Dev, 13, 492-496.
[2] K. Agata, Y. Soejima, K. Kato, C. Kobayashi, Y. Umesono, and K. Watanabe, (1998) Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers, Zool Sci, 15, 433-440.
[3] K. Agata and Y. Umesono, (2008) Brain regeneration from pluripotent stem cells in planarian, Phil. Trans. R. Soc. B, 363, 2071-2078.
[4] A. Albertini, P. Zucchini, G. Noera, R. Cadossi, C. P. Napoleone, and A. Pierangeli, (1999) Protective effect of low frequency low energy pulsing electromagnetic fields on acute experimental myocardial infarcts in rats.
[5] J. Baguna and R. Romero, (1981) Quantitative analysis of cell types during growth, regrowth and regeneration in the planarians digesia mediterranea and dugesia tigrina, Hydrobiologia, 84, 181-194.
[6] C. A. L. Bassett, (1995) Bioelectromagnetics in the ser-vice of medicine, Adv Chem, 250, 261-276.
[7] J. P. Blanchard and C. F. Blackman, (1994) Clarification and amplication of an ion parametric resonance model for magnetic field interaction with cells, Bioelectromag-netics, 14, 273-286.
[8] M. Blank and R. Goodman, (2007) A mechanism for stimulation of biosynthesis by electromagnetic fields: Charge transfer in DNA and base pair separation, J Cell Physiol doi10. 1002/jcp. 21198..
[9] M. Blank and R. Goodman, (2004) Initial interaction in electromagnetic field-induced biosynthesis, J Cell Phy- siol., 199, 359-363.
[10] M. Blank and R. Goodman, (1997) Do electromagnetic fields interact directly with DNA? Bioelectromagnetics, 18, 111-115.
[11] M. Blank and L. Soo, (2001) Electromagnetic accelera-tion of electron transfer reactions, J Cell Biochem, 81, 278-283.
[12] D. J. Canaday and R. C. Lee, (1991) Scientific basis for clinical applications of electric fields in soft tissue repair, In Electromagnetics in Medicine. (C. Brighton and S. Pollack, Eds.), San Francsico Press, San Francisco, CA, 275-292.
[13] S. Carmody, X. L. Wu, H. Lin, M. Blank, H. Skopicki, and R. Goodman, (2000) Cytoprotection by electromag-netic field-induced hsp70: A model for clinical applica-tion, J Cell Biochem, 79, 453-459.
[14] F. Cebria, T. Kudome, M. Nakazawa, K. Mineta, K. Ikeo, T. Gojobori, and K. Agata, (2002a) The expression of neural-specific genes reveals the structural and molecular complexity of the planarian central nervous system, Mech Dev, 116, 199-204.
[15] F. Cebria, M. Nakazawa, K. Mineta, K. Ikeo, T. Gojobori, and K. Agata, (2002b) Dissecting planarian central nerv-ous system regeneration by the expression of neu-ral-specific genes, Dev Growth Differ, 44, 135-146.
[16] K. Chang and W. R. Chang, (2003) Pulsed electromag-netic fields prevent osteoporosis in ovariectomized fe-male rat model: A prostaglandin E2 associated process, Bioelectromagnetics, 24, 189-198.
[17] K. C. Chou, (1988) Review: Low frequency collective motion in biomacromolecules and its biological functions, Biophysical Chemistry, 30, 3-48.
[18] K. C. Chou, (1984) Low frequency vibration of DNA molecules, Biochemical Journal, 221, 27-31.
[19] P. J. Dandliker, R. E. Holmlin, and J. K. Barton, (1997) Oxidative thymine repair in the DNA helix, Science, 275, 1465-1468.
[20] R. Dennis and T. Goodwin, (2003) Physiological and molecular genetics effects of time-varying electromag-netic fields on human neuronal cells, NASA Technical Paper TP-2003-212054.
[21] A. L. DiCarlo, J. M. Farrell, and T. A Litovitz, (1999) Myocardial protection conferred by electromagnetic fields, Circulation, 99, 813-816.
[22] C. Eichwald and J. Wallaczek, (1996) Activation de-pendent and biphasic electromagneetic field effects: Model based on cooperative enzyme kinetics in cellular signaling, Bioelectromagnetics, 17(6), 427-35.
[23] I. George, M. S. Geddis, Z. Lill, H. Lin, T. Gomez, M. Blank, M. C. Oz, and R. Goodman, (2008) Myocardial function improved by electromagnetic field induction of stress protein hsp70. J Cell Physiol DOI: 10. 1002/jcp 21461.
[24] R. Goodman and M. Blank, (2002) Insights into electro-magnetic interaction mechanisms, J Cell Physiol, 192, 16-22.
[25] R. Goodman and M. Blank, (1998) Magnetic field stress induces expression of hsp70, Cell Stress/Chaperones 3, 79-88.
[26] R. Goodman and A. S. Henderson, (1988) Exposure of salivary gland cells to low-frequency electromagnetic fields alters polypeptide synthesis, Proc Natl Acad Sci U S A, 85, 3928-3932.
[27] R. Goodman, Y. A. Lin, M. Geddis, S. Hodge, S. Panta-zatos, M. Blank, and R. Ambron, (2009) Electromagnetic fields activate the ERK cascade, increase hsp70 protein levels and promote regeneration in Planaria, International Journal of Radiation Biology, In Press.
[28] R. Goodman, D. Weisbrot, A. Uluc, and A. Henderson, (1992) Transcription in Drosophila melanogaster salivary gland cells is altered following exposure to low fre-quency electromagnetic fields: Analysis of chromosome 3R, Bioelectromagnetics, 13, 111-118.
[29] G. Gordon, (2008) Extrinsic electromagnetic fields, low frequency (phonon) vibrations and control of cell func-tion: A non-linear resonance system, J Biomed Sci and Engineering, 1, 152-156.
[30] G. Gordon, (2007) Designed electromagnetic pulsed ther-apy: Clinical applications, J Cell Physiol, 212, 579- 582.
[31] L. Han, H. Lin, M. Head, M. Jin, M. Blank, and R. Goodman, (1998) Application of magnetic field-induced heat shock protein 70 for presurgical cytoprotection, J Cell Biochem, 71, 577-583.
[32] H. Ito and C. A. Bassett, (1983) Effect of weak, pulsing electromagnetic fields on neural regeneration in the rat, Clin Orthop Relat Res, 181, 283-290.
[33] K. A. Jenrow, C. H. Smith, and A. R. Liboff, (1996) Weak extremely low frequency magnetic field-induced regeneration anomalies in the planarian dugesia tigrina, Bioelectromagnetics, 17, 467-474.
[34] K. A. Jenrow, C. H. Smith, and A. R. Liboff, (1995) Weak extremely low frequency magnetic fields and regeneration in the planarian dugesia tigrina, Bioelectro- magnetics, 16, 106-112.
[35] M. Jin, M. Blank, and R. Goodman, (2000) ERK1/2 phosphorylation, induced by electromagnetic fields, di-minishes during neoplastic transformation, J Cell Bio-chem, 78, 371-379.
[36] M. Jin, H. Lin, L. Han, M. Opler, S. Maurer, M. Blank, and R. Goodman, (1997) Biological and technical vari-ables in c-myc expression in HL60 cells exposed to 60Hz electromagnetic fields, Bioelectrochem Bioenerg, 44, 111- 120.
[37] M. Kanje, A. Rusovan, B. Sisken, and G. Lundborg, (1993) Pretreatment of rats with pulsed electromagnetic fields enhances regeneration of the sciatic nerve, Bio-electromagnetics, 14, 353-359.
[38] V. V. Lednev, (1991) Possible mechanism for influence of magnetic fields on biological systems, Bioelectro-magnetics, 12, 71-75.
[39] D. Leszczynski, S. Joenvaara, J. Reivinen, and R. Kuokka, (2002) Non-thermal activation of the hsp27/ p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for can-cer-and blood-brain barrier-related effects, Differentia-tion, 70, 120-129.
[40] A. Liboff, (2004) Toward and electromagnetic paradigm for biology and medicine, Journal of Alternative and Complementary Medicine, 1, 41-47.
[41] A. Liboff, (1985) Geomagnetic cyclotron resonance in membrane transport, J Biol Physics, 13, 99-102.
[42] H. Lin, M. Blank, M. Head, and R. Goodman, (1999) A magnetic field-responsive domain in the human HSP70 promoter, J Cell Biochem, 75, 170-176.
[43] H. Lin, M. Blank, K. R. Haseroth, and R. Goodman, (2001) Regulating genes with electromagnetic response elements, J Cell Biochem, 81, 143-148.
[44] H. Lin, L. Han, M. Blank, M. Head, and R. Goodman, (1998a) Magnetic field activation of protein-DNA bind-ing, J Cell Biochem, 70, 297-303.
[45] H. Lin, M. Head, M. Blank, L. Han, M. Jin, R. Goodman, (1998b) Myc-mediated transactivation of HSP70 expres-sion following exposure to magnetic fields, J Cell Bio-chem, 69, 181-188.
[46] H. Lin, M. Opler, M. Head, M. Blank, and R. Goodman, (1997) Electromagnetic field exposure induces rapid, transitory heat shock factor activation in human cells, J Cell Biochem, 66, 482-488.
[47] R. S. M. Fenn, R. Das, and P. A. B. Harbury, (2009) Remeasuring the double helix, Science, 322, 449.
[48] R. I. Morimoto, (1998) Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones and negative regulators, Genes & Development.
[49] W. J. O'Brien, H. M. Murray, and M. G. Orgel, (1984) Effects of pulsing electromagnet fields on nerve regen-eration: Correlation of electrophysiologic and histo-chemical parameters in adult guinea pigs, J Bioelectricity, 3, 33-40.
[50] M. G. Orgel, W. J. O'Brien, and H. M. Murray, (1984) Pulsing electromagnetic field therapy in nerve regenera-tion: an experimental study in the cat, Plast Reconstr Surg, 73, 173-183.
[51] D. J. Panagopoulos, A. Karabarbounis, and L. H. Marga-ritis, (2002) Mechanism of action of electromagnetic fields on cells, Biochem Biophys Res Com, 298, 95-102.
[52] A. R. Raji and R. E. Bowden, (1983) Effects of high-peak pulsed electromagnetic field on the degenera-tion and regeneration of the common peroneal nerve in rats, J Bone Joint Surg Br, 65, 478-492.
[53] S. Rajski and J. K. Barton, (2001) How different DNA- binding proteins affect long-range-oxidated damage to DNA, Biochemistry, 40, 5556-5564.
[54] S. Rao and A. S. Henderson, (1996) Regulation of c-fos is affected by electromagnetic fields, J Cell Biochem, 63, 358-365.
[55] M. Ratner, (1999) Electronic motion in DNA, Nature, 397, 480-481.
[56] E. Salo and J. Baguna, (1984) Regeneration and pattern formation in planarians, J Embryol, Exp Morphol, 83, 63-80.
[57] A. S. Alvarado, (2006) Planarian regeneration: Its ending is its beginning, Cell, 124, 241-245.
[58] A. A. Sanchez, P. A. Newmark, S. M. Robb, and R. Juste, (2002) The Schmidtea mediterranea database as a mo-lecular resource for studying platyhelminths, stem cells and regeneration, Development, 129, 5659-5665.
[59] A. A. Sanchez and Newmark, (1999) Double-stranded RNA specifically disrupts gene expression during pla-narian regeneration, Proceedings of the National Acad-emy of Sciences, USA; Developmental Biology, 96(9), 5049-5054.
[60] A. A. Sanchez and P. A. Newmark, (1998) The use of planarians to dissect the molecular basis of metazoan re-generation, Wound Rep Reg, 6, 413-420..
[61] N. Schwalb and F. Temps, (2008) Base sequence and higher-order structure induce the complex excited-state dynamics in DNA, Science, 322, 243-245.
[62] J. M. Shallom, A. L. Di Carlo, D. Ko, L. M. Penafiel, A. Nakai, and T. A. Litovitz, (2002) Microwave exposure induces Hsp70 and confers protection against hypoxia in chick embryos, J Cell Biochem, 86, 490-496.
[63] F. Shao, K. Augustyn, and J. K. Barton, (2005) Sequence dependence of charge transport through DNA domains, J Am Chem Soc, 127, 17445-17452.
[64] B. F. Sisken, M. Kanje, G. Lundborg, E. Herbst, and W. Kurtz, (1989) Stimulation of rat sciatic nerve regenera-tion with pulsed electromagnetic fields, Brain Res, 485, 309-316.
[65] B. F. Sisken, J. Walker, and M. Orgel, (1993) Prospects on clinical applications of electrical stimulation for nerve regeneration, J Cell Biochem, 51, 404-409.
[66] J. L. Walker, J. M. Evans, P. Meade, P. Resig, and B. F. Sisken, (1994a) Gait-stance duration as a measure of in-jury and recovery in the rat sciatic nerve model, J Neu-rosci Methods, 52, 47-52.
[67] J. L. Walker, J. M. Evans, P. Resig, S. Guarnieri, P. Meade, and B. F. Sisken, (1994b) Enhancement of func-tional recovery following a crush lesion to the rat sciatic nerve by exposure to pulsed electromagnetic fields, Exp Neurol, 125, 302-305.
[68] M. Ubbink, M. Ejdeback, B. G. Karlsson, and D. S. Ben-dall, (1998) The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics, Structure, 3, 323-335.
[69] C. Wan, T. Fiebig, S. O. Kelley, C. R. Treadway, and J. K. Barton, (1999) Femtosecond dynamics of DNA mediated electron transfer, Proc Nat Acad Sci USA, 96, 6014-6019.
[70] C. Wan, T. Fiebig, O. Schiemann, J. K. Barton, and A. H. Zewail, (2000) Femtosecond direct observation of charge transfer between bases in DNA, Proc Natl Acad Sci USA, 97, 14052-14055.
[71] R. V. Weber, A. Navarro, J. K. Wu, H. L. Yu, and B. Strauch, (2004) Pulsed magnetic fields applied to a tran-ferred arterial loop support the rat groin composite flap, Plast Reconstr Surg, 114, 1185-1189.
[72] D. Weisbrot, O. Khorkova, H. Lin, A. Henderson, and R. Goodman, (1993) The effect of low frequency electric and magnetic fields on gene expression in Saccharomy-ces cerevisiae, Bioelectrochem Bioenerg, 31, 167-177.
[73] D. Weisbrot, H. Lin, L. Ye, M. Blank, and R. Goodman, (2003) Effects of mobile phone radiation on growth and development in Drosophila melanogaster, J Cell Biochem, 89, 48-55.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.