Synthesis and Ultrasonic Characterization of Cu/PVP Nanoparticles-Polymer Suspensions

Abstract

A polymer colloidal solution having dispersed nanoparticles of Cu metal has been developed using a novel chemical method. Colloidal solutions of representative concentrations of 0.2 to 2.0 wt% Cu-nanoparticles con-tents in the primary solutions were prepared to study the modified ultrasonic attenuation and ultrasonic velocity in polyvinyl alcohol (PVP) polymer molecules on incorporating the Cu-nanoparticles. The synthesized copper metal nanoparticles dispersed in the polymer solutions were characterized by UV-Visible absorption spectros-copy, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The nanofluid sample showed a symmetrical peak at 592 nm due to the surface plasmon resonance of the copper nanoparticles. XRD results confirmed that copper nanoparticles were crystalline in the colloidal solution. The TEM micrograph revealed spherical copper nanoparticles having diameter in the range 10 - 40 nm. A characteristic behaviour of the ultra-sonic velocity and the attenuation are observed at the particular temperature/particle concentration. It reveals that the colloidal suspension occurs in divided groups in the small micelles. The results are discussed in correlation with the thermophysical properties predicting the enhanced thermal conductivity of the samples.

Share and Cite:

G. Mishra, S. Verma, D. Singh, P. Yadawa and R. Yadav, "Synthesis and Ultrasonic Characterization of Cu/PVP Nanoparticles-Polymer Suspensions," Open Journal of Acoustics, Vol. 1 No. 1, 2011, pp. 9-14. doi: 10.4236/oja.2011.11002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Abdul, A., Richard, A.P., & Jacques, E. (1982). Ultrasonic studies of aqueous solutions of Polyvinylalcohol. Polymer, 23, 1446-1450. doi:10.1016/0032-3861(82)90242-7
[2] Arribas, A., Bermudez, M.-D., Brostow, W., Carrion-Vilches, F.-J., & Olea-Mejia, O. (2009). Scratch resistance of a polycarbonate + organoclay nanohybrid. Express Polymer Letters, 3, 621-629. doi:10.3144/expresspolymlett.2009.78
[3] Awasthi, P. (2005). Non-destructive Ultrasonic Characterization of Conensed Materials, Ph. D. Thesis, Allahabad: University of Allahabad.
[4] Biwa, S., Watanabe, Y. Motogi, S., & Ohna, N. (2004). Analysis of ultrasonic attenuation in particle-reinforced plastics by a differential scheme. Ultrasonics, 43, 5-12. doi:10.1016/j.ultras.2004.03.002
[5] Cheng, L., E. Bandarra Filho, P., & Thome, J.R. (2008). Nanofluid two-phase flow and thermal physics: A new research frontier of nanotechnology and its challenges. Journal of Nanoscience & Nanotechnology, 8, 3315–3332. doi:10.1166/jnn.2008.413
[6] Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., & Thompson, L.J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78, 718-720. doi:10.1063/1.1341218
[7] Ensminger, D., & Bond, L.J. (2005). Ultrasonics: Fundamentals, Technology and Applications, 3rd revised edn., New York: M. Deker.
[8] Fridley W.N. (1989). Creep and Relaxation of Nonlinear Viscoelastic Materials. New York: Dover Publications.
[9] Garcia-Serrano, J., Galindo, A.G., & Pal, U. (2004). Au-Al2O3 nanocomposites: XPS and FTIR spectroscopic studies. Solar Energy Materials & Solar Cells, 82, 291-298. doi:10.1016/j.solmat.2004.01.026
[10] Gatos, K.G., Kameo, K., & Karger-Kocsis (2007). On the friction and sliding wear of rubber/layered silicate nanocomposites. Express Polymer Letters, 1, 27-31. doi:10.3144/expresspolymlett.2007.6
[11] Giraldo, L.F., Brostow, W., Devaux, E., Lopez, B.L., & Perez, L.D. (2008). Scratch and wear resistance of polyamide 6 reinforced with multiwall carbon nanotubes. Journal of Nanoscience & Nanotechnology, 8, 3176-3183. doi:10.1166/jnn.2008.092
[12] Hong, K. S. (2006). Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Applied Physics Letters, 88, 031901-031903. doi:10.1063/1.2166199
[13] Khanna, P.K., Singh, N., Charan, S., Subbarao, V.V.V.S., Gokhale, R., & Mulik, U.P. (2005). Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Materials Chemistry and Physics, 93, 117-121. doi:10.1016/j.matchemphys.2005.02.029
[14] Kota, A.K., Cipriano, B.H., Powell, D., Raghavan, S.R., & Bruck, H.A. (2007). Quantitative characterization of the formation of an interpenetrating phase composite in polystyrene from the percolation of multiwalled carbon nanotubes. Nanotechnology, 18, 505705-505711. doi:10.1088/0957-4484/18/50/505705
[15] Kyt?maa, H. K. (1995). Theory of sound propagation in suspensions: a guide to particle size and concentration characterization. Powder Technology, 82, 115-121. doi:10.1016/0032-5910(94)02901-Y
[16] Mbhele, Z.H., Salemane, M.G., VanSittert, C.G.C.E., Nedeljkovic, J.M., Djokovic V., & Lugt, A.S. (2003). Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chemical Materials, 15, 5019-5024. doi:10.1021/cm034505a
[17] Mougin, P., Wilkinson, D., Roberts, K.J., Jacks, R., & Kippax, P. (2003). Sensitivity of particle sizing by ultrasonic attenuation spectroscopy to material properties. Powder Technlogy., 134, 243-248. doi:10.1016/j.powtec.2003.08.051
[18] Seok, P.J., & Choi, S.U.S. (2004). Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters, 84, 4316-4318. doi:10.1063/1.1756684
[19] Shin, H.S., Choi, H.C., Jung, Y., Kim, S.B., Song, H.J., & Shin, H. J. (2004). Chemical and size effects of nanocomposites of silver and polyvinyl pyrrolidone determined by X-ray photoemission spectroscopy. Chemical Physics Letters, 383, 418-422. doi:10.1016/j.cplett.2003.11.054
[20] Singh, D.K., Pandey, D.K., & Yadav, R.R. (2009). An ultrasonic characterization of ferrofluid. Ultrasonics, 49, 634-637. doi:10.1016/j.ultras.2009.03.005

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.