Entropy Production and the Origin of Life
Karo Michaelian
.
DOI: 10.4236/jmp.2011.226069   PDF    HTML     5,366 Downloads   11,993 Views   Citations

Abstract

All irreversible processes arise and persist to produce entropy. Entropy production is not incidental to such processes, but rather the very reason for their origin and persistence. Here we take such a thermodynamic perspective on the origin of life, recognizing that entropy production is not only the vital force of life, but the fundamental link between life in the biosphere today and its origin in the Archean. Today the greatest en-tropy production in the biosphere is due to visible photon absorption and dissipation into heat by organic material in liquid water and the subsequent degradation of the established heat gradient through the water cycle. Following this link back in time to the Archean environment leads to a suggestion for a mechanism for the origin of life based on UV photon absorption and dissipation by RNA and DNA.

Share and Cite:

K. Michaelian, "Entropy Production and the Origin of Life," Journal of Modern Physics, Vol. 2 No. 6A, 2011, pp. 595-601. doi: 10.4236/jmp.2011.226069.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Pereto, J., Bada, J. L., Lazcano, A. Charles Darwin and the Origin of Life. Origins of Life and Evolution of Bio- spheres, 39, 395-406 (2009).
[2] Oparin, A. I. The Origin of Life. Moscow: Moscow Worker publisher, (1924) (in Russian), English transla- tion: Oparin, A. I. (1968) The Origin and Development of Life (NASA TTF-488). Washington: D.C.L GPO.
[3] Miller, S.L., and Urey, H.C. Organic compound synthesis on the primitive earth. Science, 130, 245-251 (1959).
[4] Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Critical Reviews in Biochemistry and Mo- lecular Biology, 39, 99-123 (2004).
[5] Rauchfuss, H. Chemical Evolution and the Origin of Life., Springer, New York. (2008)
[6] Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E., and Cech, T.R.. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 31, 147-157 (1982).
[7] Johnston, W.K., Unrau, P.J., Lawrence, M.S., Glasner, M.E., and Bartel, D.P. RNA-catalyzed RNA polymerize- tion: Accurate and general RNA-templated primer exten- sion. Science, 292, 1319-1325 (2001).
[8] Zaher, H. S. and Unrau, P. J. Selection of an improved RNA polymerase ribozyme with superior extension and fidelity. RNA, 13, 1017-1026 (2007).
[9] Zhang, B., and Cech, T. R. Peptide bond formation by in vitro selected ribozymes. Nature, 390, 96-100 (1997).
[10] Kumar, A. L. Origin of Life. Astrophys.Space Sci., 317, 267-278 (2008).
[11] Prigogine, I., Nicolis, G., and Babloyantz A. Thermody- namics of Evolution (I). Physics Today, 25, 23-28 (1972); Thermodynamics of Evolution (II). Physics Today, 25, 38-44 (1972).
[12] Boltzmann, L.: The second law of thermodynamics, in: Ludwig Boltzmann: Theoretical Physics and Philosophi- cal Problems: Selected Writings, edited by: McGinness, B., Reidel Publishing Co., Dordrecht, Netherlands, 1974.
[13] Whitman, W. B., Coleman, D. C:, and Wiebe, W. J. Pro- karyotes: The unseen majority. Proc. Natl. Acad. Sci., 95, 6578-6583 (1998).
[14] Gates, D. M. Biophysical Ecology, Springer-Verlag,, New York Inc., ISBN 0-387-90414-X. (1980).
[15] Michaelian, K.: Biological catalysis of the hydrological cycle: life’s thermodynamic function, Hydrol. Earth Syst. Sci. Discuss., 8, 1093-1123, doi:10.5194/hessd-8-1093- 2011, 2011, and, Thermodynamic function of life, arXiv: 0907.0040v2[physics.gen-ph] (2009).
[16] Horton, P., Ruban, A. V. and Walters, R. G. Regulation of Light Harvesting in Green Plants. Plant Physiol., 106, 415-420 (1994).
[17] Whitehead,K., Hedges J. I. Analysis of mycosporine-like amino acids in plankton by liquid chromatography electrospray ionization mass spectrometry. Marine Chemistry, 80, 27-39 (2002).
[18] Evstigneev, V. B. On the evolution of the photosynthetic pigments, Origins of Life, 6, 435-439 (1975).
[19] Wang, J., Bras, R. L., Lerdau, M., and Salvucci, G. D. A maximum hypothesis of transpiration, J. Geophys. Res., 112, G03010 (2007).
[20] Michaelian, K. Thermodynamic origin of life, Earth Syst. Dynam. Discuss., 1, 1-39 (2010) and Thermodynamic dissipation theory for the origin of life, Earth Syst. Dynam., 2, 37-1, 2011, www.earth-syst-dynam.net/2/37/2011/ doi:10.5194/esd-2-37-2011.
[21] Lowe, D. R., and Tice, M. M. Geologic evidence for Archean atmospheric and climatic evolution: Fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control. Geology, 32, 493-496 (2004).
[22] Sagan, C. Ultraviolet Selection Pressure on the Earliest Organisms. J. theor. Biol., 39, 195-200 (1973).
[23] Cnossen, I., Sanz-Forcada, J., Favata, F., Witasse, O., Zegers, T., Arnold, N. F. The habitat of early life: Solar X-ray and UV radiation at Earth’s surface 4-3.5 billion years ago. J. Geophys. Research, 112, E02008 (2007).
[24] Voet D, Gratzer WB, Cox RA, Doty P. Absorption spec- tra of nucleotides, polynucleotides, and nucleic acids in the far ultraviolet. Biopolymers, 1, 193-208 (1963).
[25] Callis, P.R. Electronic states and luminescence of nucleic acid systems. Annu. Rev. Phys. Chem., 34, 329-57 (1983).
[26] Pecourt J-ML, Peon J, Kohler B. Ultrafast internal conversion of electronically excited RNA and DNA nucleosides in water. J. Am. Chem. Soc., 122, 9348-9349 (2000).
[27] Pecourt J-ML, Peon J, Kohler B. DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides. J. Am. Chem. Soc., 123, 10370-10378 (2001).
[28] Mulkidjanian, A. Y., Cherepanov, D. A., and Galperin, M. Y. Survival of the fittest before the beginning of life: se- lection of the first oligonucleotide-like polymers by UV light. BMC Evolutionary Biology, 3, 12 (2003).
[29] Middleton, C. T., de la Harpe, K., Su, C., Law, Y. K., Crespo-Hernández, C. E., Kohler, B. DNA Excited –State dyanmics: from single bases to the double helix. Annu. Rev. Phys. Chem., 60, 217-39 (2009).
[30] Mullis, K. The unusual origin of the Polymerase Chain Reaction. Scientific American, April, 56-65 (1990).

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.