Share This Article:

Biostratigraphy and Paleoecological Study of Pabdeh Formation in Interior Fars, Zagros Basin, Iran

Abstract Full-Text HTML XML Download Download as PDF (Size:4333KB) PP. 571-581
DOI: 10.4236/ojg.2014.411042    2,974 Downloads   3,776 Views   Citations

ABSTRACT

The Zagros basin, which trends NW-SE, is covered by a sea during the Paleogene, resulting in deposition of the Pabdeh Formation in the deeper parts of the basin. The thickness of the Pabdeh Formation in Tang-e-Abolhayat is about 221 m and it consists of purple shale at the base, gray shale, marl and marly limestone with a few horizons of nodular limestone toward the top. Seventy-two samples were collected and processed for nannofossil studies. Based on the identified nannofossil zones the age of the formation in Tang-e-Abolhayat is Late Paleocene-Late Oligocene (NP9-NP24). Changes in the abundance of different genera over the studied interval have resulted in identification of three ecozones: Ecozone 1 is characterized by oligotrophic conditions with an abundance of warm water taxa; Ecozone 2 marks when conditions became more eutrophic and the abundance of temperate taxa increased; Ecozone 3 represents a return to oligotrophic conditions with an increase in warm water taxa.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Khavari Khorassani, M. , Hadavi, F. , Ghasemi-Nejad, E. and Mousavi-Harami, R. (2014) Biostratigraphy and Paleoecological Study of Pabdeh Formation in Interior Fars, Zagros Basin, Iran. Open Journal of Geology, 4, 571-581. doi: 10.4236/ojg.2014.411042.

References

[1] Smith, J., Burg, J.P., Dolati, A. and Sokoutis, D. (2010) Effects of Mass Waste Events on Thrust Wedges: Analogue Experiments and Application to the Makran Accretionary Wedge. Tectonics, 29, 1-11.
[2] Agard, P., Omrani, J., Jolivet, L. and Mouthereau, F. (2005) Convergence History across Zagros, Iran; Constraints from Collisional and Earlier Deformation. International Journal of Earth Sciences, 94, 401-419. http://dx.doi.org/10.1007/s00531-005-0481-4
[3] Alavi, M. (2004) Regional Stratigraphy of the Zagros Fold-Trust Belt of Iran and Its Proforland Evolution. American Journal Science, 304, 1-20. http://dx.doi.org/10.2475/ajs.304.1.1
[4] Farzipour-Saein, A., Yassaghi, A., Sherkati, S. and Koyi, H. (2009) Basin Evolution of the Lurestan Region in the Zagros Fold-and-Thrast Belt, Iran. Journal of Petroleum Geology, 32, 5-19.
http://dx.doi.org/10.1111/j.1747-5457.2009.00432.x
[5] Lacome, O., Grasemann, B. and Simpson, G. (2011) Geodynamic Evolution of the Zagros. Geological Magazine, 148, 689-691. http://dx.doi.org/10.1017/S0016756811000550
[6] Sampo, M. (1969) Microfacies and Microfossils of the Zagrous Area Southwest Iran (From Pre-Permian to Miocene). NIOC, Iran.
[7] Kamali, M.R., Fathi Mobarakabad, A. and Mohsenian, E. (2006) Petroleum Geochemistry and Thermal Modeling of Pabdeh Formation in Dezful Embayment. Journal Science of University Tehran, 32, 1-11.
[8] James, G.A. and Wynd, J.G. (1965) Stratigraphical Nomenclature of Iranian Oil Consortium Agreement Area. American Association Petroleum Geology B, 49, 2182-2245.
[9] Bown, P.R. (1998) Calcareous Nannofossils Biostratigraphy. Kluwer Academic Press, Dordrecht. http://dx.doi.org/10.1007/978-94-011-4902-0
[10] Beaufort, L., Probert, I., de Garidel-Thoron, T., Bendif, E.M., Ruiz-Pino, D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B., Rickaby, R.E. and de Vargas, C. (2011) Sensitivity of Coccolithophores to Carbonate Chemistry and Ocean Acidification. Nature, 476, 80-83.
http://dx.doi.org/10.1038/nature10295
[11] Bown, P.R. and Young, J.R. (1998) Techniques. In: Bown, P.R., Ed., Calcareous Nannofossil Biostratigraphy, Paleoceanography, 1-3.
[12] Perch-Nielsen, K. (1985) Cenozoic Calcareous Nannofossils. In: Bolli, H.M., Sanders, J.B. and Perch-Nielsen, K., Eds., Plankton Stratigraphy, Cambridge University Press, Cambridge, 427-554.
[13] Bown, P.R. (2005) Paleogene Calcareous Nannofossils from the Kilwa and Lindi Areas of Coastal Tanzania (Tanzania Drilling Project 2003-4). Journal of Nannoplankton Research, 27, 21-95.
[14] Donnally, D.M. (1989) Calcareous Nannofossils of the Norwegian—Greenland Sea: ODP LEG 104. Proceedings of the Ocean Drilling Program, Scientific Results, 104, 458-486.
[15] Martini, M. (1971) Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation. Proceeding of the 2nd Planktonic Conference Roma, 2, 739-785.
[16] Okada, H. and Bukry, D. (1980) Supplementary Modification and Introduction of Code Numbers to the Low-Latitude Coccolith Biostratigraphic Zonation (Bukry, 1973; 1975). Marine Micropaleontology, 5, 321-325. http://dx.doi.org/10.1016/0377-8398(80)90016-X
[17] Gradstein, F.M., Ogg, J.G., Schmitz, M. and Ogg, G. (2012) The Geologic Time Scale 2012. Elsevier Science BV, Oxford.
[18] Aubry, M.P. (1983) Correlations biostratigraphiques entre less formations plaeogenes epicontinentales de l’Europe du Nord-Ouest, basees sur la nannoplankton calcaire. Thesis, Universite Pierre et Marie Curie, Paris.
[19] Backman, J. and Hermelin, J.O.R. (1986) Morphometry of the Eocene Nannofossil Reticulofenestra umbilicus Lineage and Its Biochronological Consequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 57, 103-116. http://dx.doi.org/10.1016/0031-0182(86)90009-X
[20] Martini, E. (1981) Nannoplankton in der Ober-Kreide, im Alttertiar und im tieferen Jungtertiar von Süddeutschland und dem angrenzenden Osterreich. Geologica Bavarica, 82, 345-356.
[21] Melinte-Dobrinescu, M. and Brustur, T. (2008) Oligocene—Lower Miocene Events in Romania. Acta Palaeontologica, 6, 203-215.
[22] Tremolada, F. and Bralower, T.J. (2004) Nannofossils Assemblage Fluctuations during the Paleocene-Eocene Thermal Maximum at Site 213 (Indian Ocean) and 401 (North Atlantic Ocean): Paleoceanographic Implications. Marine Micropaleontology, 52, 107-116.
http://dx.doi.org/10.1016/j.marmicro.2004.04.002
[23] Agnini, C., Fornaciari, E., Rio, D., Tateo, F., Backman, J. and Giusberti, L. (2006) Responses of Calcareous Nannofossil Assemblages, Mineralogy and Geochemistry to the Environmental Perturbations across the Paleocene/Eocene Boundary in the Venetian Pre-Alps. Marine Micropaleontology, 63, 19-38. http://dx.doi.org/10.1016/j.marmicro.2006.10.002
[24] Jiang, S. and Wise, S.W.J.R. (2009) Distinguishing the Influence of Digenesis on the Paleoecological Reconstruction of Nannoplankton across the Paleocene/Eocene Thermal Maximum: An Example from the Kerguelen Plateau, Southern Indian Ocean. Marine Micropaleontology, 72, 49-59.
http://dx.doi.org/10.1016/j.marmicro.2009.03.003
[25] Bown, P.R. and Pearson, P. (2009) Calcareous Plankton Evolution and the Paleocene/Eocene Thermal Maximum Event: New Evidence from Tanzania. Marine Micropaleontology, 71, 60-70.
http://dx.doi.org/10.1016/j.marmicro.2009.01.005
[26] Aubry, M.P. (1992) Paleogene Calcareous Nannofossils from the Kerguelen Plateau, Leg 120. In: Wise, S.W., Schlich, R., et al., Eds., Proceedings of the Ocean Drilling Program, Scientific Results, Ocean Drilling Program, College Station, 471-491.
[27] Flores, J., Sierro, F.J., Filippelli, M.A.B., Perez-Folgado, M., Vazquez, A. and Utrilla, R. (2005) Surface Water Dynamics and Phytoplankton Communities during Deposition of Cyclic Late Messinian Sapropel Sequences in the Western Mediterranean. Marine Micropaleontology, 56, 50-79.
http://dx.doi.org/10.1016/j.marmicro.2005.04.002
[28] Villa, G. and Persico, D. (2006) Late Oligocene Climatic Changes: Evidence from Calcareous Nannofossils at Kerguelen Plateau Site 748 (Southern Ocean). Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 110-119. http://dx.doi.org/10.1016/j.palaeo.2005.07.028
[29] Raffi, I., Backman, J., Zachos, J.C. and Sluijs, A. (2009) The Response of Calcareous Nannofossil Assemblages to the Paleoceene Eocene Thermal Maximum at the Walvis Ridge in the South Atlantic. Marine Micropaleontology, 70, 201-212. http://dx.doi.org/10.1016/j.marmicro.2008.12.005
[30] Wie, W. and Wise Jr., S.W. (1990) Middle Eocene to Pleistocene Calcareous Nannofossils Recovered by Ocean Drilling Program Leg 113 in the Weddell Sea. Proceedings of the Ocean Drilling Program, Scientific Results, 113, 639-666.
[31] Wie, W. and Thierstein, H.R. (1991) Upper Cretaceous and Cenozoic Calcareous Nannofossils of the Kerguelen Plateau (Southern Indian Ocean) and Prydz Bay (East Antarctica). Proceedings of the Ocean Drilling Program, Scientific Results, 119, 467-493.
[32] Haq, B.U. and Lohmann, G.P. (1976) Early Cenozoic Calcareous Nannoplankton Biogeography of the Atlantic Ocean. Marine Micropaleontology, 1, 119-194.
http://dx.doi.org/10.1016/0377-8398(76)90008-6
[33] Gibbs, S.J., Bralower, T.J., Bown, P.R., Zachos, J.C. and Bybell, L.M. (2006) Shelf and Open-Ocean Clcareous Phytoplankton Assemblages across the Paleocene-Eocene Thermal Maximum: Implications for Global Productivity Gradients. Geology, 34, 233-236. http://dx.doi.org/10.1130/G22381.1
[34] Villa, G., Fioroni, C., Pea, L., Bohaty, S.M. and Persico, D. (2008) Middle Eocene-Late Oligocene Climate Variability: Calcareous Nannofossil Response at Kerguelen Plateau, Site 748. Marine Micropaleontology, 69, 173-192. http://dx.doi.org/10.1016/j.marmicro.2008.07.006
[35] Young, J.R. (1994) Functions of Coccoliths. In: Winter, A. and Siesser, W.G., Eds., Coccolithophores, Cambridge University Press, New York, 13-27.
[36] Aksu, A.E., Hiscott, R.N., Kaminski, M.A., Mudie, P.J., Gillespie, H., Abrajano, T. and Yasar, D. (2002) Last Glacial-Holocene Paleoceanography of the Black Sea and Marmara Sea: Stable Isotopic, Foraminiferal and Coccolith Evidence. Marine Geology, 190, 119-149.
http://dx.doi.org/10.1016/S0025-3227(02)00345-6
[37] Speijer, R.P., Scheibner, C., Stadden, P. and Morsi, A.M.M. (2012) Response of Marine Ecosystems to Deep-Time Global Warming: A Synthesis of Biotic Patterns across the Paleocene-Eocene Thermal Maximum (PETM). Australian Journal of Earth Science, 105, 6-16.
[38] Tremolada, F., Erba, E. and Bralower, T.J. (2007) A Review of Calcareous Nannofossil Changes during the Early Aptian Oceanic Anoxic Event 1a and the Paleocene-Eocene Thermal Maximum: The Influence of Fertility, Temperature, and pCO2. Geology Society of American Special Papers, 424, 87-96.
[39] Bralower, T.J. (2002) Evidence of Surface Water Oligotrophy during the Paleocene-Eocene Thermal Maximum: Nannofossil Assemblage Data from Ocean Drilling Program Site 690 Maud Rise, Weddel Sea. Paleoceanography, 17, 1-12. http://dx.doi.org/10.1029/2001PA000662
[40] Zachos, J.C., Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001) Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292, 686-693.
http://dx.doi.org/10.1126/science.1059412
[41] Zachos, J.C., Dickens, G.R. and Zeebe, R.E. (2008) An Early Cenozoic Perspective on Greenhouse Warming and Carbon Cycle Dynamics. Nature, 451, 279-283. http://dx.doi.org/10.1038/nature06588
[42] Blaj, T. (2009) Late Eocene through Oligocene Calcareous Nannofossils from the Palaeo-Equatorial Pacific Ocean Taxonomy, Preservation History, Biochronology and Evolution. Dissertation, Stockholm University, Stockholm.
[43] Bukry, D. (1973) Low-Latitude Coccolith Biostratigraphic Zonation. Initial Reports of the Deep Sea Drilling Project, 15, 685-703.
[44] Wei, W. and Wise Jr., S.W. (1989) Paleogene Calcareous Nannofossil Magnetobiochronology: Results from South Atlantic DSDP Site 516. Marine Micropaleontology, 14, 119-152.
http://dx.doi.org/10.1016/0377-8398(89)90034-0
[45] De Man, E. and Van Simaeys, S. (2004) Late Oligocene Warming Event in the Southern Sea Basin: Benthic Foraminifera as Paleotemperature Proxies. Netherlands Journal of Geoscience, 83, 227-239.
[46] Svábenická, L., Bubik, M. and Stránik, Z. (2007) Biostratigraphy and Paleoenvironmental Changes on the Transition from the Menilite to Krosno Lithofacies (Western Carpathians, Czech Republic). Geology Carpathians, 58, 327-262.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.