The effects of different sterilization methods on silk fibroin
Yahong Zhao, Xiaoli Yan, Fei Ding, Yumin Yang, Xiaosong Gu
.
DOI: 10.4236/jbise.2011.45050   PDF    HTML     7,217 Downloads   13,664 Views   Citations

Abstract

The aim of this study was to investigate the changes in the molecular structure and physiological activities of silk fibroin induced by three different sterilization methods (steam, gamma radiation and ethylene oxide) with different dose or time period of sterilization by means of Fourier transform infrared (FT-IR) spec-troscopy, X-ray diffraction, mechanical properties and assessment of molecular weight. The results showed that the steam sterilization darkened the color of silk fibroin and obviously affected the mechanical property; gamma irradiation slightly degraded the molecular weight of silk fibroin and the speed of degradation increased with increasing irradiation dose; and ethylene oxide almost had no influence on silk fibroin expect for some slight hydrolysis on mo-lecular weight. Because ethylene oxide sterilization had the smallest influence on the quality of silk fi-broin with compared to other sterilization methods, it could be used as an efficient method to make fibroin more suitable for the development of functional foods and cosmetics.

Share and Cite:

Zhao, Y. , Yan, X. , Ding, F. , Yang, Y. and Gu, X. (2011) The effects of different sterilization methods on silk fibroin. Journal of Biomedical Science and Engineering, 4, 397-402. doi: 10.4236/jbise.2011.45050.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Veparia, C. and Kaplan, D.L. (2008) Silk as a biomaterial. Progress in Polymer Science, 32, 991-1007. doi:10.1016/j.progpolymsci.2007.05.013
[2] Yang, Y.M., Ding, F., Wu, J., Hu, W., Liu, W., Liu, J. and Gu, X.S. (2007) Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials, 28, 5526-5535. doi:10.1016/j.biomaterials.2007.09.001
[3] Postlethwait, R.W. (1970) Long-term comparative study of nonabsorbable sutures. Ann Surg, 171, 892-897. doi:10.1097/00000658-197006010-00010
[4] Altman, G.H., Horan, R.L., Lu, H.H., Moreau, J., Martin, I., Richmond, J.C. and Kaplan, D.L. (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials, 23, 4131-4141. doi:10.1016/S0142-9612(02)00156-4
[5] Altman, G.H., Diaz, F., Jakuba, C., Calabro, T., Horan, R.L., Chen, J.S., Lu, H., Richmond, J. and Kaplan, D.L. (2003) Silk-based biomaterials. Biomaterials, 24, 401-416. doi:10.1016/S0142-9612(02)00353-8
[6] Yang, Y.M., Chen, X.M., Ding, F., Zhang, P.Y., Liu, J. and Gu, X.S. (2007) Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials, 28, `1643-1652.
[7] Chen, X.M., Yang, Y.M., Wu, J., Zhao, Y.H., Ding, F. and Gu, X.S. (2007) Biocompatibility studies of silk fibroin-based artificial nerve grafts in vitro and in vivo. Progress in Natural Science, 17, 1029-1034.
[8] Minoura, N., Aiba, S.I., Gotoh, Y., Tsukada, M. and Imai, Y. (1995) Attachment and growth of cultured fibroblast cells on silk protein matrices. Journal of Biomeical Materials Research, 29, 1215-1221. doi:10.1002/jbm.820291008
[9] Kim, U.J., Park, J., Kim, H.J., Wada, M. and Kaplan, D.L. (2005) Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials, 26, 2775-2785. doi:10.1002/jbm.820291008
[10] Meinel, L., Hofmann, S., Karageorgiou, V., Kirker-Head, C., McCool, J., Gronowicz, G., Zichner, L., Langer, R., Vunjak-Novakovia, G. and Kaplan, D.L. (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials, 26, 147-55. doi:10.1016/j.biomaterials.2004.02.047
[11] Odelius, K., Plikk, P. and Albertsson, A.C. (2008) The influence of composition of porous copolyester scaffolds on reactions induced by irradiation sterilization. Biomaterials, 29, 129-140. doi:10.1016/j.biomaterials.2007.08.046
[12] Kamakuraa, H., Hiranob, T., Itoc, H. and Sunagac, H. (2002) Studies on the sterilization methods for the crude drugs. Possibility of EB machine for decontamination of crude drugs and influence on the components of crude drugs by irradiation. Radiation Physics and Chemistry, 63, 685-689. doi:10.1016/S0969-806X(01)00659-4
[13] Yang, Y.M., Zhao, Y.H., Liu, X.H., Ding, F. and Gu, X.S. (2007) The effect of different sterilization procedures on chitosan. Journal of Applied Polymer Science, 104, 1968-1972. doi:10.1002/app.25906
[14] Kawano, Y. and Logarezzi, A.J.M. (1995) X-ray induced degradation of regenerated cellulose membrane films. Polymer Degradation and Stability, 50, 125-130. doi:10.1016/0141-3910(95)00145-C
[15] Booth, A.F. (1999) Illinois: Interpharm Press. Buffalo G, USA.
[16] Najafpour, G.D. (2007) Sterilisation. Biochemical Engineering and Biotechnology, Elsevier, Netherlands, 342-350. doi:10.1016/B978-044452845-2/50015-X
[17] Kim, J.K., Jo, C., Park, H.J. and Byun, M.W. (2008) Effect of gamma irradiation on the physicochemical properties of a starch-based film. Food Hydrocolloids, 22,248-254. doi:10.1016/B978-044452845-2/50015-X
[18] Mendes, G.C.C., Brand?o, T.R.S., and Silva, C.L.M. (2007) Ethylene oxide sterilization. American Journal of Infection Control, 35, 574-581. doi:10.1016/j.ajic.2006.10.014
[19] Horan, R.L., Antle, K., Collette, A.L., Wang, Y.Z., Huang, J., Moreau, J.E., Volloch, V., Kaplan, D.L. and Altman, G.H. (2005) In vitro degradation of silk fibroin. Biomaterials, 26, 3385-3393. doi:10.1016/j.biomaterials.2004.09.020
[20] Zheng, W.H. and X. Xu.(2005) Research progress on Maillard reaction. Progress In Chemistry, 17, 122-129.
[21] Alariqi, S.A.S., Kumar, A.P., Rao, B.S.M. and Sing, R.P. (2007) Stabilization of ?-sterilized biomedical polyolefins by synergistic mixtures of oligomeric stabilizers. Part II: Polypropylene matrix. Polymer Degradation Stability, 92, 299-309. doi:10.1016/j.polymdegradstab.2006.10.010

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.