Share This Article:

Analyses Using SSR and DArT Molecular Markers Reveal that Ethiopian Accessions of White Lupin (Lupinus albus L.) Represent a Unique Genepool

Abstract Full-Text HTML Download Download as PDF (Size:384KB) PP. 87-98
DOI: 10.4236/ojgen.2014.42012    3,752 Downloads   5,034 Views   Citations

ABSTRACT

PCR-based genic and microarray-based Diversity Arrays Technology (DArTTM) markers were used to determine genetic diversity in 94 accessions of white lupin (Lupinus albus L.) comprising Australian and foreign cultivars, landraces, and advanced breeding lines from Australian breeding programs. A total of 345 (50 PCR-based and 295 DArT-based) polymorphic fragments were identified, which were used to determine the genetic diversity among accessions. Both cluster analysis of bivariate marker data using UPGMA, and principal coordinate analysis, indicated a high level of genetic diversity in the germplasm. Our results showed that both types of markers used in this study are suitable for estimation of genetic diversity. Landrace accessions from Ethiopia formed a very distinct and separate grouping with both marker systems. Australian cultivars and breeding lines were clustered together and tended to be distinct from European landraces. These findings will allow breeders to select appropriate, diverse parents to broaden the genetic base of white lupin breeding populations.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Raman, R. , Cowley, R. , Raman, H. and Luckett, D. (2014) Analyses Using SSR and DArT Molecular Markers Reveal that Ethiopian Accessions of White Lupin (Lupinus albus L.) Represent a Unique Genepool. Open Journal of Genetics, 4, 87-98. doi: 10.4236/ojgen.2014.42012.

References

[1] Dinkelaker, B., Romheld, V. and Marschner, H. (1989) Citric Acid Excretion and Precipitation of Calcium Citrate in the Rhizosphere of White Lupin (Lupinus albus L.). Plant, Cell & Environment, 12, 285-292.
http://dx.doi.org/10.1111/j.1365-3040.1989.tb01942.x
[2] Gardner, W.K., Parbery, D.G. and Barber, D.A. (1982) The Acquisition of Phosphorus by Lupinus albus L. I. Some Characteristics of the Soil/Root Interface. Plant and Soil, 68, 19-32.
http://dx.doi.org/10.1007/BF02374724
[3] Johnson, J.F., Vance, C.P. and Allan, D.L. (1996) Phosphorus Deficiency in Lupinus albus (Altered Lateral Root Development and Enhanced Expression of Phosphoenolpyruvate Carboxylase). Plant Physiology, 112, 31-41.
http://dx.doi.org/10.1104/pp.112.1.31
[4] Massonneau, A., Langlade, N., Léon, S., Smutny, J., Vogt, E., Neumann, G. and Martinoia, E. (2001) Metabolic Changes Associated with Cluster Root Development in White Lupin (Lupinus albus L.): Relationship between Organic Acid Excretion, Sucrose Metabolism and Energy Status. Planta, 213, 534-542.
http://dx.doi.org/10.1007/s004250100529
[5] Neumann, G. and Martinoia, E. (2002) Cluster Roots—An Underground Adaptation for Survival in Extreme Environments. Trends in Plant Science, 7, 162-167. http://dx.doi.org/10.1016/S1360-1385(02)02241-0
[6] Cowling, W.A., Huyghe, C. and Swiecicki, W. (1998) Lupin Breeding. In: Gladstones, J.S., Atkins, C.A. and Hamblin, J., Eds., Lupins as Crop Plants: Biology, Production and Utilization, CAB International, Wallingford, 93-120.
[7] Edwards, A.C. and van Barneveld, R.J. (1998) Lupins for Livestock and Fish. In: Gladstones, J.S., Atkins, C.A. and Hamblin, J. Eds., Lupins as Crop Plants: Biology, Production and Utilization, CAB International, Wallingford, 385-409.
[8] Patterson, D.S. (1998) Composition and Food Uses of Lupins. In: Gladstones, J.S., Atkins, C.A. and Hamblin, J., Eds, Lupins as a Crop Plants: Biology, Production and Utilization, CAB International, London, 353-384.
[9] Cowling, W.A., Buirchell, B.J. and Tapia, M.E. (1998) Lupin. Lupinus L. Promoting the Conservation and Use of Underutilized and Neglected Crops. 23. Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, and International Plant Genetic Resources Institute (IPGRI), Rome.
[10] Del Pilar Vilarino, M. and Ravetta, D.A. (2008) Tolerance to Herbivory in Lupin Genotypes with Different Alkaloid Concentration: Interspecific Differences between Lupinus albus L. and L. angustifolius L. Environmental and Experimental Botany, 63, 130-136.
http://dx.doi.org/10.1016/j.envexpbot.2007.10.032
[11] Gladstones, J.S. (1970) Lupins as Crop Plants. Field Crop Abstracts, 23, 123-148.
[12] Noffsinger, S.L. and Santen, E.V. (2005) Evaluation of Lupinus albus L. Germplasm for the Southeastern USA. Crop Science, 45, 1941-1950. http://dx.doi.org/10.2135/cropsci2004.0575
[13] Luckett, D.J., Cowley, R.B., Richards, M.F. and Roberts, D.M. (2009) Breeding Lupinus albus for Resistance to the Root Pathogen Pleiochaeta setosa. European Journal of Plant Pathology, 125, 131-141.
http://dx.doi.org/10.1007/s10658-009-9465-8
[14] Cowley, R.B., Ash, G.J., Harper, J.D.I. and Luckett, D.J. (2012) Evaluation of Resistance to Phomopsis Stem Blight (Caused by Diaporthe toxica) in Lupinus albus. European Journal of Plant Pathology, 133, 631-644.
http://dx.doi.org/10.1007/s10658-012-9942-3
[15] Sweetingham, M.W., Jones, R.A.C. and Brown, A.G.P. (1998) Diseases and Pests. In: Gladstones, J.S., Atkins, C.A. and Hamblin, J., Eds., Lupins as Crop Plants: Biology, Production and Utilization, CAB International, Wallingford, 263-289.
[16] Adhikari, K.N., Buirchell, B.J., Thomas, G.J., Sweetingham, M.W. and Yang, H. (2009) Identification of Anthracnose Resistance in Lupinus albus L. and Its Transfer from Landraces to Modern Cultivars. Crop & Pasture Science, 60, 472-479. http://dx.doi.org/10.1071/CP08092
[17] Gonzalez-Andres, F., Casquero, P.A., San-Pedro, C. and Hernandez-Sanchez, E. (2007) Diversity in White Lupin (Lupinus albus L.) Landraces from Northwest Iberian Plateau. Genetic Resources and Evolution, 54, 27-44.
http://dx.doi.org/10.1007/s10722-005-1407-5
[18] Vaz, A.C., Pinheiro, C., Martins, J.M.N. and Ricardo, C.P.P. (2004) Cultivar Discrimination of Portuguese Lupinus albus by Seed Protein Electrophoresis: The Importance of Considering “Glutelins” and Glycoproteins. Field Crop Research, 87, 23-34.
[19] Talhinhas, P., Neves-Martins, J. and Leitao, J. (2003) AFLP, ISSR and RAPD Markers Reveal High Levels of Genetic Diversity among Lupinus spp. Plant Breeding, 122, 507-510. http://dx.doi.org/10.1111/j.1439-0523.2003.00892.x
[20] Gilbert, J.E., Lewis, R.V., Wilkinson, M.J. and Caligari, P.D.S. (1999) Developing an Appropriate Strategy to Assess Genetic Variability in Plant Germplasm Collections. Theoretical and Applied Genetics, 98, 1125-1131.
http://dx.doi.org/10.1007/s001220051176
[21] Yuan, H., Yan, G., Siddique, K.H.M. and Yang, H. (2005) RAMP Based Fingerprinting and Assessment of Relationships among Australian Narrow-Leafed Lupin (Lupinus angustifolius L.) Cultivars. Australian Journal of Agricultural Research, 56, 1339-1346. http://dx.doi.org/10.1071/AR05188
[22] Phan, H.T.T., Ellwood, S.R., Adhikari, K., Nelson, M.N. and Oliver, R.P. (2007) The First Genetic and Comparative Map of White Lupin (Lupinus albus L.): Identification of QTLs for Anthracnose Resistance and Flowering Time, and a Locus for Alkaloid Content. DNA Research, 14, 59-70. http://dx.doi.org/10.1093/dnares/dsm009
[23] Nelson, M.N., Phan, H.T.T., Ellwood, S.R., Moolhuijzen, P.M., Hane, J., Williams, A., O’Lone, C.E., Fosu-Nyarko, J., Scobie, M., Cakir, M., Jones, M.G.K., Bellgard, M., Ksiazkiewicz, M., Wolko, B., Barker, S.J., Oliver, R.P. and Cowling, W.A. (2006) The First Gene-Based Map of Lupinus angustifolius L.—Location of Domestication Genes and Conserved Synteny with Medicago truncatula. Theoretical and Applied Genetics, 113, 225-238.
http://dx.doi.org/10.1007/s00122-006-0288-0
[24] Jaccoud, D., Peng, K., Feinstein, D. and Kilian, A. (2001) Diversity Arrays: A Solid State Technology for Sequence Information Independent Genotyping. Nucleic Acid Research, 29, e25. http://dx.doi.org/10.1093/nar/29.4.e25
[25] Vipin, C.A., Luckett, D.J., Harper, J.D.I., Ash, G.J., Kilian, A., Ellwood, S.R., Phan, H.T.T. and Raman, H. (2013) Construction of Integrated Linkage Map of a Recombinant Inbred Line Population of White Lupin (Lupinus albus L.) Breeding Science, 63, 292-300. http://dx.doi.org/10.1270/jsbbs.63.292
[26] Wenzl, P., Carling, J., Kudrna, D., Jaccoud, D., Huttner, E., Kleinhofs, A. and Kilian, A. (2004) Diversity Arrays Technology (DArT) for Whole-Genome Profiling of Barley. Proceedings of the National Academy of Sciences of the United States of America, 101, 9915-9920.
http://dx.doi.org/10.1073/pnas.0401076101
[27] Wenzl, P., Li, H.B., Carling, J., Zhou, M.X., Raman, H., Paul, E., Hearnden, P., Maier, C., Xia, L., Caig, V., Ovesna, J., Cakir, M., Poulsen, D., Wang, J.P., Raman, R., Smith, K.P., Muehlbauer, G.J., Chalmers, K.J., Kleinhofs, A., Huttner, E. and Kilian, A. (2006) A High-Density Consensus Map of Barley Linking DArT Markers to SSR, RFLP and STS Loci and Agricultural Traits. BMC Genomics, 7, 206. http://dx.doi.org/10.1186/1471-2164-7-206
[28] Stodart, B.J., Raman, H., Coombes, N. and Mackay, M. (2007) Evaluating Landraces of Bread Wheat Triticum aestivum L. for Tolerance to Aluminium under Low pH Conditions. Genetic Resources and Crop Evolution, 54, 759-766.
http://dx.doi.org/10.1007/s10722-006-9150-0
[29] Akbari, M., Wenzl, P., Caig, V., Carling, J., Xia, L., Yang, S., Uszynski, G., Mohler, V., Lehmensiek, A., Kuchel, H., Hayden, M., Howes, N., Sharp, P., Vaughan, P., Rathmell, B., Huttner, E. and Kilian, A. (2006) Diversity Arrays Technology (DArT) for High-Throughput Profiling of the Hexaploid Wheat Genome. Theoretical and Applied Genetics, 113, 1409-1420. http://dx.doi.org/10.1007/s00122-006-0365-4
[30] Xia, L., Peng, K., Yang, S., Wenzl, P., Carmen de Vicente, M., Fregene, M. and Kilian, A. (2005) DArT for High-Throughput Genotyping of Cassava (Manihot esculenta) and Its Wild Relatives. Theoretical and Applied Genetics, 110, 1092-1098. http://dx.doi.org/10.1007/s00122-005-1937-4
[31] Cowley, R.B., Luckett, D.J., Ash, G.J., Harper, J.D.I., Vipin, C., Raman, H. and Ellwood, S. (2014) Identification of QTLs Associated with Resistance to Phomopsis Pod Blight (Diaporthe toxica) in Lupinus albus. Breeding Science, in press.
[32] FAO-UNESCO (1974) Soil Map of the World, Vol. 1, Legend. UNESCO, Paris, 59.
[33] Raman, R., Raman, H., Johnstone, K., Lisle, C., Smith, A., Martin, P. and Allen, H. (2005) Genetic and in Silico Comparative Mapping of the Polyphenol Oxidase Gene in Bread Wheat (Triticum aestivum L.). Functional and Integrated Genomics, 5, 185-200. http://dx.doi.org/10.1007/s10142-005-0144-3
[34] Lin, R.M., Renshaw, D., Luckett, D., Clements, J., Yan, G.J., Adhikari, K., Buirchell, B., Sweetingham, M. and Yang, H.A. (2009) Development of a Sequence-Specific PCR Marker Linked to the Gene “Pauper” Conferring Low-Alkaloids in White Lupin (Lupinus albus L.) for Marker Assisted Selection. Molecular Breeding, 23, 153-161.
http://dx.doi.org/10.1007/s11032-008-9222-2
[35] Yang, H.A., Lin, R.M., Renshaw, D., Li, C.D., Adhikari, K., Thomas, G., Buirchell, B., Sweetingham, M. and Yan, G.J. (2010) Development of Sequence-Specific PCR Markers Associated with a Polygenic Controlled Trait for Marker-Assisted Selection Using a Modified Selective Genotyping Strategy: A Case Study on Anthracnose Disease Resistance in White Lupin (Lupinus albus L.). Molecular Breeding, 25, 239-249.
http://dx.doi.org/10.1007/s11032-009-9325-4
[36] Schuelke, M. (2000) An Economic Method for the Fluorescent Labeling of PCR Fragments. Nature Biotechnology, 18, 233-234. http://dx.doi.org/10.1038/72708
[37] Jaccoud, D., Peng, K., Feinstein, D. and Kilian, A. (2001) Diversity Arrays: A Solid State Technology for Sequence Information Independent Genotyping. Nucleic Acids Research, 29, e25. http://dx.doi.org/10.1093/nar/29.4.e25
[38] Perrier, X. and Jacquemoud-Collet, J.P. (2006) DARwin Software. http://darwin.cirad.fr/darwin.
[39] Saitou, N. and Nei, M. (1987) The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution, 4, 406-425.
[40] Anderson, M.J. (2003) PCO: A FORTRAN Computer Program for Principal Component Analysis. Department of Statistics, University of Auckland, Auckland.
[41] Croxford, A.E., Rogers, T., Caligari, P.D.S. and Wilkinson, M.J. (2008) High-Resolution Melt Analysis to Identify and Map Sequence-Tagged Site Anchor Points onto Linkage Maps: A White Lupin (Lupinus albus) Map as an Exemplar. New Phytologist, 180, 594-607. http://dx.doi.org/10.1111/j.1469-8137.2008.02588.x
[42] Schut, J., Qi, X. and Stam, P. (1997) Association between Relationship Measures Based on AFLP Markers, Pedigree Data and Morphological Traits in Barley. Theoretical and Applied Genetics, 95, 1161-1168.
http://dx.doi.org/10.1007/s001220050677
[43] Dudley, J.W. (1994) Comparison of Genetic Distance Estimators Using Molecular Marker Data. Joint Plant Breeding Symposia Series, Corvallis, 5-6 August 1994, 3-7.
[44] Luckett, D.J., Richards, M.F., Roberts, D.M. and Cowley, R.B. (2008) Violet Seed Colour in Albus Lupins. 12th International Lupin Conference, Fremantle, September 2008, 315-316.
[45] Roberts, R.J., Vincze, T., Posfai, J. and Macelis, D. (2007) REBASE-Enzymes and Genes for DNA Restriction and Modification. Nucleic Acids Research, 35, 269-270.
http://dx.doi.org/10.1093/nar/gkl891

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.