Direct and Alternate Current Conductivity and Magnetoconductivity of Nanocrystalline Cadmium-Zinc Ferrite below Room Temperature

Abstract

Nanocrystalline cadmium-zinc ferrite samples were prepared by ball milling method and its electrical transport property were investigated within a temperature range 77 K ≤ T ≤ 300 K in presence of a magnetic field up to 1T and in a frequency range 20 Hz to 1 MHz. The investigated samples follow a simple hopping type charge transport. The dc magnetoconductivity has been explained in terms of orbital magnetoconductivity theory. The alternating current conductivity follows the universal dielectric response σ'/(f) ∝ Tnfs. The values of ‘s’ have a decreasing trend with temperature. The temperature exponent ‘n’ depends on frequency. The dielectric permittivity of the samples depends on the grain resistance and interfacial grain boundary resistance. The ac magnetoconductivity is positive which can be explained in terms of impedance of the sample.

Share and Cite:

S. Ghatak, G. Chakraborty, M. Sinha, S. Pradhan and A. Meikap, "Direct and Alternate Current Conductivity and Magnetoconductivity of Nanocrystalline Cadmium-Zinc Ferrite below Room Temperature," Materials Sciences and Applications, Vol. 2 No. 4, 2011, pp. 226-236. doi: 10.4236/msa.2011.24029.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. M. Berskovsky, V. F. Medvcdcv and M. S. Krakov, “Magnetic Fluids: Engineering Applications,” Oxford University Press, Oxford, 1993.
[2] R. E. Ayala and D. W. Marsh, “Characterization and Long-Range Reactivity of Zinc Ferrite in High-Temperature Desulfurization Processes,” Industrial & Engineering. Chemistry Research, Vol. 30, No. 1, January 1991, pp. 55-60. doi:10.1021/ie00049a009
[3] L. A. Bissett and L. D. Strickland, “Analysis of a Fixed- Bed Gasfier IGCC Configuration,” Industrial & Engineering. Chemistry Research, Vol. 30, No. 1, January 1991, pp. 170-176.
[4] M. Sugimoto, “The Past, Present and Future of Ferrites,” Journal of the American Ceramic Society, Vol. 82, No. 2, February 1999, pp. 269-280. doi:10.1111/j.1551-2916.1999.tb20058.x
[5] I. Safarik and M. Sararikova, “Nanostructured Materials, Magnetic Nanoparticles and Biosciences,” Springer, Wien, 2002, p. 1.
[6] S. Son, M. Taheri, E. Carpenter, V. G. Harris and M. E. Mctterny, “Synthesis of Ferrite and Nickel Ferrite Nano-Particles Using Radio-Frequency Thermal Plasma Torch,” Journal of Applied Physics,Vol. 91, No. 10, 2002, pp. 7589-7591. doi:10.1063/1.1452705
[7] I. Anton, I. de Sabata and L. Vekas, ”Application Oriented Researches on Magnetic Fluids,” Journal of Magnetism and Magnetic Materials, Vol. 85, No. 1-3, April 1990, pp. 219-226. doi:10.1016/0304-8853(90)90056-V
[8] R. D. McMickael, R. D. Shull, L. J. Swartzendruber, L. H. Bennett and R. E. Watson, ”Magnetocaloric Effect in Superparamagnets,” Journal of Magnetism and Magnetic Materials,” Vol. 111, No. 1-2, June 1992, pp. 29-33. doi:10.1016/0304-8853(92)91049-Y
[9] D. L. Leslie-Pelecky and R. D. Rieke, “Magnetic Properties of Nanostructured Materials,” Chemistry of Materials, Vol. 8, No. 8, August 1996, pp. 1770-1783. doi:10.1021/cm960077f
[10] R. H. Kodama, A. E. Berkowitz, E. J. McNiff and S. Foner, “Surface Spin Disorder in Ferrite Nanoparticles (Invited),” Journal of Applied Physics, Vol. 81, No. 8, 1997, pp. 5552-5557.
[11] S. A. Oliver, H. H. Handeh and J. C. Ho, “Localized Spin Canting in Partially Inverted ZnFe2O4 Fine Powders,” Physical Review B, Vol. 60, 1999, pp. 3400-3405. doi:10.1103/PhysRevB.60.3400
[12] S. Bid and S. K. Pradhan, “Preparation of Zinc Ferrite by High-Energy Ball Milling and Microstructure Characterization by Rietveld’s Analysis,” Materials Chemistry and Physics, Vol. 82, No. 1, September 2003, pp. 27-37. doi:10.1016/S0254-0584(03)00169-X
[13] S. K. Pradhan, S. Bid, M. Gateshki and V. Petkov, “Microstructure Characterization and Cation Distribution of Nanocrystalline Magnesium Ferrite Prepared by Ball Milling,” Materials Chemistry and Physics, Vol. 93, No. 1, September 2005, pp. 224-230. doi:10.1016/j.matchemphys.2005.03.017
[14] H. H. Hamdeh, J. C. Ho, S. A. Oliver, R. J. Willey, G. Oliveri and G. Busca, “Magnetic Properties of Partially-Inverted Zinc Ferrite Aerogel Powders,” Journal of Applied Physics, Vol. 81, No. 4, 1997, pp. 1851-1857.
[15] P. Chen, D. Y. Xing, Y. W. Du, J. M. Zhu and D. Feng, “Giant Room—Temperature Magnetoresistance in Polycrystalline Zn0.41Fe2.59O4 with α-Fe2O3 Grain Boundaries,” Physical Review Letters, Vol. 87, No. 10, 2001, pp. 107202 (4).
[16] M. Hofmann, S. J. Campbell, H. Ehrhardt and R. Feyerherm, “The Magnetic Behaviour of Nanostructured Zinc Ferrites,” Journal of Material Science, Vol. 39, No. 16-17, 2004, pp. 5057-5065. doi:10.1023/B:JMSC.0000039185.80910.59
[17] S. D. Shenoy, P. A. Joy and M. R. Anantharaman, “Effect of Mechanical Milling on the Structural, Magnetic and Dielectric Properties of Coprecipitated Ultrafine Zinc Ferrite,” Journal of Magnetism and Magnetic Materials, Vol. 269, No. 2, February 2004, pp. 217-226. doi:10.1016/S0304-8853(03)00596-1
[18] Z. L. Lu, L. Y. Lv, J. M. Zhu, S. D. Li, X. C. Liu, W. Q. Zou, F. M. Zhang and Y. W. Du, “Magnetic and Transport Property Studies of Nanocrystalline ZnxFe3-xO4,” Solid State Communications, Vol. 137, No. 10, March 2006, pp. 528-532. doi:10.1016/j.ssc.2006.01.014
[19] Y. F. Tian, S. S. Yan, Y. P. Zhang, H. Q. Song, G. Ji, G. L. Liu, Y. X. Chen, L. M. Mei, J. P. Liu, B. Altuncevahir and V. Chakka, “Transformation of Electrical Transport from Variable Range Hopping to Hard Gap Resistance in ZnxFe3-xO1-?,” Journal of Applied Physics, Vol. 100, No. 10, 2006, pp. 103901 (6).
[20] L. D. Tung, V. Kolesnichenko, G. Caruntu, D. Caruntu, Y. Remond, V. O. Golub, C. J. O’Connor and L. Spinu, “Annealing Effects on the Magnetic Properties of Nanocrystalline Zinc Ferrite,” Physica B, Vol. 319, No. 1-4, July 2002, pp. 116-121. doi:10.1016/S0921-4526(02)01114-6
[21] P. M. G. Nambissan, C. Upadhyay and H. C. Verma, “Position, Lifetime Spectroscopic Studies of Nanocrystalline ZnFe2O4,” Journal of Applied Physics, Vol. 93, No. 10, 2003, pp. 6320-6326. doi:10.1063/1.1569973
[22] C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault and J. M. Greneche, “Magnetic Properties of Nanostructured Ferimagnetic Zinc Ferrite,” Journal of Physics: Condensed Matter, Vol. 12, No. 35, September 2000, pp. 7795. doi:10.1088/0953-8984/12/35/314
[23] H. Ehrhardt, S. J. Capbell and M. Hofmann, “Structural Evolution of Ball Milled ZnFe2O4,” Journal of Alloys and Compounds, Vol. 339, No. 1-2, June 2002, pp. 255-260. doi:10.1016/S0925-8388(01)02011-4
[24] D. Ravinder, “Thermoelectric Power and Electrical Resistivity of Cadmium-Substituted Manganese Ferrite,” Materials Letters, Vol. 44, No. 3-4, June 2000, pp. 130- 138. doi:10.1016/S0167-577X(00)00015-X
[25] D. Ravinder, “Electrical Transport Properties of Cadmium Substituted Copper Ferrite,” Materials Letters, Vol. 43, No. 3, April 2000, pp. 129-138. doi:10.1016/S0167-577X(99)00245-1
[26] D. Ravinder, S. S. Rao and P. Shalini, “Room Temperature Electric Properties of Cadmium-Substituted Nickel Ferrites,” Materials Letters, Vol. 57, No. 24-25, August 2003, pp. 4040-4042. doi:10.1016/S0167-577X(03)00089-2
[27] H. M. Rietveld, “Line Profile of Neutron Powder Diffraction Peaks for Structure Refinement,” Acta Crystallographica, Vol. 22, 1967, pp. 151-152. doi:10.1107/S0365110X67000234
[28] H. M. Rietveld, “A Profile Refinement Method for Nuclear and Magnetic Structures,” Journal of Applied Crystallography, Vol. 2, 1969, pp. 65-71. doi:10.1107/S0021889869006558
[29] R. A. Young, “The Rietveld Method,” Oxford University Press, Oxford, 1996.
[30] L. Lutterotti, P. Scardi and P. Maistrelli, “LSI-a Computer Program for Simultaneous Refinement of Material Structure and Microstructure,” Journal of Applied Crystallography, Vol. 25, No. 3, 1992, pp. 459-462. doi:10.1107/S0021889892001122
[31] L. Lutterotti, “MAUD Version 2.046.,” http://www.ing.unitn.it/~luttero/maud.
[32] S. Ghatak, M. Sinha, A. K. Meikap and S. K. Pradhan, “Electrical Transport Properties of Nanocrystalline Zinc Ferrite,” Physica E, Vol. 40, January 2008, pp. 2686- 2693. doi:10.1016/j.physe.2007.12.030
[33] C. A. Neugebauer and M. B. Webb, “Electrical Conduction Mechanism in Ultrathin Evaporated Metal Films,” Journal of Applied. Physics, Vol. 33, No. 1, 1962, pp. 74-83.
[34] V. L. Nguyen, B. Z. Spivak and B. I. Shklovskii, “Tunnel Hops in Disordered Systems,” Soviet Physics-JETP, Vol. 62, 1985, p. 1021.
[35] U. Sivan, O. Entin-Wohiman and Y. Imry, “Orbital Magnetoconductance in the Variable Range Hopping Regime,” Physical Review Letters, Vol. 60, No. 15, 1988, pp. 1566- 1569. doi:10.1103/PhysRevLett.60.1566
[36] B. I. Shklovskii, “Positive Magnetoresistance in the Variable Range Hopping Conduction Regimes,” Soviet Physics Semiconductors, Vol. 17, 1983, p. 1311.
[37] N. F. Mott and E. Davis, “Electronic Process in Noncrystalline Materials,” 2nd Edition, Oxford University Press, New York, 1997.
[38] A. R. Long, “Frequency-Dependent Lossin Amorphous Semi-Conductors,” Advances in Physics, Vol. 31, No. 5, 1982, pp. 553-637. doi:10.1080/00018738200101418
[39] S. R. Elliott,” A.c. Conduction in Amorphous Chalcogenide and Pnictide Semiconductors,” Advances in Physics, Vol. 36, No. 2, 1987, pp. 135-217. doi:10.1080/00018738700101971
[40] A. L. Efros, “On the Theory of A.c. Conduction in Amorphous Semiconductors and Chalcogenide Glasses,” Philosophical Magazine B, Vol. 43, No. 5, 1981, pp. 829-838. doi:10.1080/01418638108222349
[41] B. G. Soares, M. E. Leyva, G. M. O. Barra and D. Khastgir, “Dielectric Behaviour of Polyaniline Synthesized by Different Techniques,” European Polymer Journal, Vol. 42, No. 3, 2006, pp. 676-686. doi:10.1016/j.eurpolymj.2005.08.013
[42] S. S. Suryavanshi, S. R. Patil, S. A. Patil and S. R. Sawant, “D.C. Resistivity and Dielectric Behaviour of Ti4+ Substituted Mg-Zn Ferrite,” Journal of the Less-Common Metals, Vol. 168, No. 2, March 1991, pp. 169-174. doi:10.1016/0022-5088(91)90298-I
[43] J. C. Maxwell, “A Treatise on Electricity and Magnetism,” Oxford University Press, Oxford, 1988.
[44] V. Hippel, “Dielectrics and Waves,” Wiley, New York, 1954.
[45] G. Catalan, “Magnetocapacitance without Magnetoelectric Coupling,” Applied Physics Letters, Vol. 88, No. 10, 2006, pp. 102902-102905. doi:10.1063/1.2177543

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.