Share This Article:

Morphological and Optical Properties of Dimetallo-Phthalocyanine-Complex Thin Films

Abstract Full-Text HTML Download Download as PDF (Size:1082KB) PP. 20-28
DOI: 10.4236/ampc.2014.42004    5,320 Downloads   7,443 Views   Citations

ABSTRACT

In this work, the synthesis of semiconducting molecular materials formed from metallo-phthalocyanines (MPcs) and bidentate amines is reported. Powder and thin-film samples of the synthesized materials, deposited by vacuum thermal evaporation, show the same intra-molecular bonds in IR-spectroscopy studies. The morphology of the deposited films was studied using scanning electron microscopy and atomic force microscopy. The optical parameters have been investigated using spectrophotometric measurements of transmittance in the wavelength range 200 - 1100 nm. The absorption spectra in the UV-Vis region for the deposited samples showed two bands, namely the Q and Soret bands. The optical band gap values of the thin films were calculated from the absorption coefficient α in the absorption region and were found to be around 1.4 - 1.6 eV. The dependence of the Tauc and Cody optical gaps on the thickness of the film was also determined.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Sánchez-Vergara, J. Álvarez-Bada, C. Perez-Baeza, E. Loza-Neri, R. Torres-García, A. Rodríguez-Gómez and J. Alonso-Huitron, "Morphological and Optical Properties of Dimetallo-Phthalocyanine-Complex Thin Films," Advances in Materials Physics and Chemistry, Vol. 4 No. 2, 2014, pp. 20-28. doi: 10.4236/ampc.2014.42004.

References

[1] M. M. El-Nahass, K. F. Abd-El-Rahman and A. A. A. Darwish, “Fourier-Transform Infrared and UV-Vis Spectroscopes of Nickel Phthalocyanine Thin Films,” Materials Chemistry and Physics, Vol. 92, No. 1, 2005, pp. 185-189.
http://dx.doi.org/10.1016/j.matchemphys.2005.01.008
[2] T. S. Shafai and T. D. Anthopoulos, “Junction Properties of Nickel Phthalocyanine Thin Film Devices Utilizing Indium Injecting Electrodes,” Thin Solid Films, Vol. 398-399, 2001, pp. 361-367.
http://dx.doi.org/10.1016/S0040-6090(01)01345-1
[3] S. Robinet, C. Clarisse, M. Gauneau and M. Salvi, “Spectroscopic and Structural Studies of Scandium Diphthalocyanine Films,” Thin Solid Films, Vol. 182, No. 1-2, 1989, pp. 307-317.
http://dx.doi.org/10.1016/0040-6090(89)90267-8
[4] S. Gravano, A. K. Hassan and R. D. Gould, “Effects of Annealing on the Trap Distribution of Cobalt Phthalocyanine Thin Films,” International Journal of Electronics, Vol. 70, No. 3 1991, pp. 477-484.
[5] S. J. Kim, M. Matsumoto and K. Shigehara, “Synthesis and Electrical Properties of One-Dimensional Octacyanometallophthalocyanine (M≡Fe, Co),” Journal of Porphyrins and Phthalocyanines, Vol. 4, No. 1, 2000, pp. 136-144.
http://dx.doi.org/10.1002/(SICI)1099-1409(200001/02)4:1<136::AID-JPP213>3.0.CO;2-J
[6] R. Seoudi, G. S. El-Bahy and Z. A. El Sayed, “FTIR, TGA and DC Electrical Conductivity Studies of Phthalocyanine and Its Complexes,” Journal of Molecular Structure, Vol. 753, No. 1-3, 2005, pp. 119-126.
http://dx.doi.org/10.1016/j.molstruc.2005.06.003
[7] M. M. El-Nahass, A. M. Farag, Abd-El-Rahman and A. A. A. Darwish, “Dispersion Studies and Electronic Transitions in Nickel Phthalocyanine Thin Films,” Optics & Laser Technology, Vol. 37, No. 7, 2005, pp. 513-523.
http://dx.doi.org/10.1016/j.optlastec.2004.08.016
[8] T. Del Caño, V. Parra, M. L. Rodriguez-Méndez, R. F. Aroca and J. A. De Saja, “Characterization of Evaporated Trivalent and Tetravalent Phthalocyanines Thin Films: Different Degree of Organization,” Applied Surface Science, Vol. 246, No. 4, 2005, pp. 327-333.
http://dx.doi.org/10.1016/j.apsusc.2004.11.036
[9] G. A. Kumar, G. J. Vinoy Thomas, N. V. Unnikrishnan and V. P. N. Nampoori, “NIR to UV Absorption Spectra and the Optical Constants of Phthalocyanines in Glassy Medium,” Spectrochimica Acta Part A, Vol. 59, No. 1, 2003, pp. 1-11.
http://dx.doi.org/10.1016/S1386-1425(02)00037-9
[10] K. Tokumaru, “Photochemical and Photophysical Behavior of Porphyrins and Phthalocyanines Irradiated with Violet or Ultraviolet Light,” Journal of Porphyrins and Phthalocyanines, Vol. 5, No. 1, 2001, pp. 57-86.
http://dx.doi.org/10.1002/1099-1409(200101)5:1<77::AID-JPP302>3.0.CO;2-X
[11] Z. T. Liu, H. S. Kwok and A. B. Djurisic, “The Optical Functions of Metal Phthalocyanines,” Journal of Physics D: Applied Physics, Vol. 37, No. 5, 2004, pp. 678-688.
http://dx.doi.org/10.1088/0022-3727/37/5/006
[12] M. E. Ragoussi, J. J. Cid, J. H. Yum, G. De la Torre, D. Di Censo, M. Grätzel, M. K. Nazeeruddin and T. Torres, “Carboxyethynyl Anchoring Ligands: A Means to Improving the Efficiency of Phthalocyanine-Sensitized Solar Cells,” Angewandte Chemie International Edition, Vol. 51, No. 18, 2012, pp. 4375-4378.
[13] T. D. Anthopoulos and T. S. Shafai, “SCLC Measurements in Nickel Phthalocyanine Thin Films,” physica Status Solidi (a), Vol. 181, No. 2, 2000, pp. 569-574.
http://dx.doi.org/10.1002/1521-396X(200010)181:2<569::AID-PSSA569>3.0.CO;2-Y
[14] L. Ottaviano, S. Di Nardo, L. Lozzi, M. Passacantando, P. Picozzi and S. Santucci, “Thin and Ultra-Thin Films of Nickel Phthalocyanine Grown on Highly Oriented Pyrolitic Graphite: An XPS, UHV-AFM and Air Tapping-Mode AFM Study,” Surface Science Vol. 373, No. 2-3, 1997, pp. 318-332.
http://dx.doi.org/10.1016/S0039-6028(96)01179-X
[15] N. Kobayashi, T. Fukuda, K. Ueno and H. Ogino, “Extremely Non-Planar Phthalocyanines with Saddle or Helical Conformation: Synthesis and Structural Characterization,” Journal of the American Chemical Society, Vol. 123, No. 43, 2001, pp. 10740-10741.
http://dx.doi.org/10.1021/ja0113753
[16] X. Liu, L. C. Xu, T. J. He, D. M. Chen and F. C. Liu, “Density Functional Theory Investigations of Geometries and Electronic Spectra of Lithium Phthalocyanines,” Chemical Physics Letters, Vol. 379, No. 5-6, 2003, pp. 517-525.
http://dx.doi.org/10.1016/j.cplett.2003.08.065
[17] T. Kimura, M. Sumimoto, S. Sakaki, H. Fujimoto, Y. Hashimoto and S. Matsuzaki, “Electronic Structure of Lithium Phthalocyanine Studied by Ultraviolet Photoemission Spectroscopy,” Chemical Physics, Vol. 253, No. 1, 2000, pp. 125-131.
http://dx.doi.org/10.1016/S0301-0104(99)00381-X
[18] M. M. Hart, “Cationic Exchange Reactions Involving Dilithium Phthalocyanine,” Thesis for the degree of Master of Science. Wright State University, Dayton, 2009.
[19] B. P. Rand, D. Cheyns, K. Vasseur, N. C. Giebink, S. Mothy, Y. Yi, V. Coropceanu, D. Beljonne, J. Cornil, J. L. Brédas and J. Genoe, “The Impact of Molecular Orientation on the Photovoltaic Properties of a Phthalocyanine/ Fullerene Heterojunction,” Advanced Functional Materials, Vol. 22, No., 2012, pp. 2987-2995.
http://dx.doi.org/10.1002/adfm.201200512
[20] M. M. El-Nahass, M. M. Sallam and H. A. Ali, “Optical Properties of Thermally Evaporated Metal-Free Phthalocyanine (H2Pc) Thin Films,” International Journal of Modern Physics B, Vol. 19, No. 27, 2005, pp. 4057-4071.
[21] M. M. El-Nahass, K. F. Abd-El-Rahman, A. A. Al-Ghamdi and A. M. Asiri, “Optical Properties of Thermally Evaporated Tin-Phthalocyanine Dichloride Thin Films, SnPcCl2,” Physica B: Condensed Matter, Vol. 334, No. 1-4, 2004, pp. 398-406.
http://dx.doi.org/10.1016/j.physb.2003.10.019
[22] M. M. El-Nahass, K. F. Abd-El-Rahman and A. A. A. Darwish, “Fourier-Transform Infrared and UV-vis Spectroscopes of Nickel Phthalocyanine Thin Films,” Materials Chemistry and Physics Vol. 92, No. 1, 2005, pp. 185-189.
http://dx.doi.org/10.1016/j.matchemphys.2005.01.008
[23] K. R. Rajesh and C. S. Menon, “D. C. Electrical and Optical Properties of Vacuum-Deposited Organic Semiconductor FePcCl Thin Films,” Canadian Journal of Physics, Vol. 83, No. 11, 2005, pp. 1151-1159.
http://dx.doi.org/10.1139/p05-065
[24] R. Seoudi, G. S. El-Bahy and Z. A. El Sayed, “Ultraviolet and Visible Spectroscopic Studies of Phthalocyanine and Its Complexes Thin Films,” Optical Materials, Vol. 29, No. 2-3, 2006, pp. 304-312.
http://dx.doi.org/10.1016/j.optmat.2005.10.002
[25] X. Li, H. Zhu, J. Wei, K. Wang, E. Xu, Z. Li and D. Wu, “Determination of Band Gaps of Self-Assembled Carbon Nanotube Films Using Tauc/Davis-Mott Model,” Applied Physics A, Vol. 97, No. 2, 2009, pp. 341-344.
http://dx.doi.org/10.1007/s00339-009-5330-z
[26] S. K. O’Leary and P. K. Lim, “On Determining the Optical Gap Associated with an Amorphous Semiconductor: A Generalization of the Tauc Model,” Solid State Communications, Vol. 104, No.1, 1997, pp. 17-21.
[27] T. M. Mok and S. K. O’Leary, “The Dependence of the Tauc and Cody Optical Gaps Associated with Hydrogenated Amorphous Silicon on the Film Thickness: αl Experimental Limitations and the Impact of Curvature in the Tauc and Cody Plots,” Journal of Applied Physics, Vol. 102, No., 2007, pp. 113525.
http://dx.doi.org/10.1063/1.2817822
[28] M. E. Sánchez-Vergara, J. C. Alonso-Huitrón, A. Rodriguez-Gomez and J. N. Reider-Burstin, “Determination of the Optical GAP in Thin Films of Amorphous Dilithium Phthalocyanine Using the Tauc and Cody Models,” Molecules, Vol. 17, No. 9, 2012, pp. 10000-10013.
http://dx.doi.org/10.3390/molecules170910000
[29] S. Nlate, E. Herdtweck, J. Blümel and R. A. Fischer, “Coordination of Alane and Aluminum Alkyls to the N-Donor Atom of Side Chain Functionalized Cyclopentadienyl Iron and Nickel Complexes; Structure of {[(C5H5)(C5H4CH2NMe2)]Fe}2AlH3,” Journal of Organometallic Chemistry, Vol. 545-546, 1997, pp. 543-548.
http://dx.doi.org/10.1016/S0022-328X(97)00359-8
[30] R. A. Fischer and T. Priermeier, “Transition-Metal-Substituted Alanes: Synthesis and Spectroscopic Studies and the Structure of (eta5-C5H5)(CO)2Fe-Al[(CH2)3NMe2](iBu), Organometallics, Vol. 13, No. 11, 1994, pp. 4306-4314.
[31] O. G. Morales-Saavedra, M. E. Sánchez-Vergara, A. A. Rodríguez-Rosales, R. Ortega-Martínez, A. Ortiz-Rebollo, B. A. Frontana-Uribe and V. García-Montalvo, “Synthesis and Electrical, Spectroscopic and Nonlinear Optical Properties of Cobalt Molecular Materials Obtained from PcCo(CN)L (L = Ethylenediamine, 1,4-Diaminebutane, 1,12-Diaminododecane and 2,6-Diamineanthraquinone),” Materials Chemistry and Physics, Vol. 123, No. 2-3, 2010, pp. 776-785.
http://dx.doi.org/10.1016/j.matchemphys.2010.05.059
[32] N. Laidani, R. Bartali, G. Gottardi, M. Anderle and P. Cheyssac, “Optical Absorption Parameters of Amorphous Carbon Films from Forouhi-Bloomer and Tauc-Lorentz Models: A Comparative Study,” Journal of Physics: Condensed Matter, Vol. 20, 2008, Article ID: 015216.
http://dx.doi.org/10.1088/0953-8984/20/01/015216
[33] L. Leontie, M. Roman, F. Brinza, C. Podaru and G. I. Rusu, “Electrical and Optical properties of some new synthesized ylides in thin films,” Synthetic Metals, Vol. 138, No. 1-2, 2003, pp. 157-163.
http://dx.doi.org/10.1016/S0379-6779(02)01277-8
[34] E. Carbia-Ruelas, M. E. Sánchez-Vergara, V. García-Montalvo and O. G. Morales-Saavedra, “Electrical and Optical Properties of Thermally-Evaporated Thin Films from A2[TiO(C2O4)2] (A = K, PPh4) and 1,8-Dihydrox- yanthraquinone,” Applied Surface Science, Vol. 257, No. 8, 2011, pp. 3313-3319.
http://dx.doi.org/10.1016/j.apsusc.2010.11.011
[35] M. E. Azim-Araghi and A. Krier, “Optical Characterization of Chloroaluminium Phthalocyanine (ClAlPc) Thin Films,” Journal of Optics A: Pure and Applied Optics, Vol. 6, 1997, pp. 443-453.
http://dx.doi.org/10.1088/0963-9659/6/4/007
[36] G. D. Cody, “Hydrogenated Amorphous Silicon, Part B, Optical Properties, Semiconductors and Semimetals,” Academic Press, Orlando, 1984.
[37] A. Thakur, G. Singh, G. S. S. Saini, N. Goyal and S. K. Tripathi, “Optical Properties of Amorphous Ge20Se80 and Ag6(Ge0.20Se0.80)94 Thin Films,” Optical Materials, Vol. 30, No. 4, 2007, pp. 565-570.
http://dx.doi.org/10.1016/j.optmat.2006.12.013

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.