Effective Modified Carbon Nanofibers as Electrodes for Capacitive Deionization Process

Abstract

Carbon materials have the advantages of good electrical conductivity and excellent chemical stability, so many carbon materials have been introduced as electrodes for the capacitive deionization (CDI) process. Due to the low surface area compared to the other nanocarbonaceous materials, CNFs performance as electrode in the CDI units is comparatively low. This problem has been overcome by preparing high surface area carbon nanofibers and by creating numerous long pores on the nanofibers surface. The modified CNFs have been synthesized using low cost, high yield and facile method; electrospinning technique. Stabilization and graphitization of electrospun nanofiber mats composed of polyacrylonitrile (PAN) and poly (methyl methacrylate) (PMMA) leads form longitudinal pores CNFs. The utilized characterizations indicated that the CNFs obtained from electrospun solution having 50% PMMA have surface area of 181 m2/g which are more than the conventional CNFs. Accordingly, these nanofibers revealed salt removal efficiency of ~90% and specific capacitance of 237 F/g.

Share and Cite:

Barakat, N. , El-Deen, A. and Khalil, K. (2014) Effective Modified Carbon Nanofibers as Electrodes for Capacitive Deionization Process. Journal of Materials Science and Chemical Engineering, 2, 38-42. doi: 10.4236/msce.2014.21007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. D. Khawaji, I. K. Kutubkhanah and J. M. Wie, “Advances in Seawater Desalination Technologies,” Desalination, Vol. 221, 2008, pp. 47-69. http://dx.doi.org/10.1016/j.desal.2007.01.067
[2] M. A. Anderson, A. L. Cudero and J. Palma, “Capacitive Deionization as an Electrochemical Means of Saving Energy and Delivering Clean Water. Comparison to Present Desalination Practices: Will It Compete?” Electrochim Acta, Vol. 55, 2010, pp. 3845-3856. http://dx.doi.org/10.1016/j.electacta.2010.02.012
[3] T. Welgemoed and C. Schutte, “Capacitive Deionization Technology?: An Alternative Desalination Solution,” Desalination, Vol. 183, 2005, pp. 327-340. http://dx.doi.org/10.1016/j.desal.2005.02.054
[4] J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala and J. F. Poco, “Capacitive Deionization of NaCl and NaNO3 Solutions with Carbon Aerogel Electrodes,” Journal of The Electrochemical Society, Vol. 143, 1996, pp. 159-169. http://dx.doi.org/10.1149/1.1836402
[5] C. M. Yang, W. H. Choi, B. K. Na, B. W. Cho and W. I. Cho, “Capacitive Deionization of NaCl Solution with Carbon Aerogel-Silica Gel Composite Electrodes,” Desalination, Vol. 174, 2005, pp. 125-133. http://dx.doi.org/10.1016/j.desal.2004.09.006
[6] L. Zou, G. Morris and D. Qi, “Using Activated Carbon Electrode in Electrosorptive Deionisation of Brackish Water,” Desalination, Vol. 225, 2008, pp. 329-340. http://dx.doi.org/10.1016/j.desal.2007.07.014
[7] L. Pan, X. Wang, Y. Gao, Y. Zhang, Y. Chen and Z. Sun, “Elec-trosorption of Anions with Carbon Nanotube and Nanofibre Composite Film Electrodes,” Desalination, Vol. 244, 2009, pp. 139-143. http://dx.doi.org/10.1016/j.desal.2008.05.019
[8] G. Wang, Q. Dong, Z. Ling, C. Pan, C. Yu and J. S. Qiu, “Hierarchical Activated Carbon Nanofiber Webs with Tuned Structure Fabricated by Electrospinning for Capacitive Deionization,” Journal of Materials Chemistry, Vol. 22, 2012, pp. 21819-21823. http://dx.doi.org/10.1039/c2jm34890j
[9] G. Wang, C. Pan, L. P. Wang, Q. Dong, C. Yu, Z. B. Zhao and J. S. Qiu, “Activated Carbon Nanofiber Webs Made by Elec-trospinning for Capacitive Deionization,” Electrochim Acta, Vol. 69, 2012, pp. 65-70. http://dx.doi.org/10.1016/j.electacta.2012.02.066
[10] L. Wang, M. Wang, Z. H. Huang, T. X. Cui, X. C. Gui, F. Y. Kang, K. L. Wang and D. H. Wu, “Capacitive Deionization of NaCl Solutions Using Carbon Nanotube Sponge Electrodes,” Journal of Materials Chemistry, Vol. 21, 2011, pp. 18295-18299. http://dx.doi.org/10.1039/c1jm13105b
[11] D. S. Zhang, T. T. Yan, L. Y. Shi, Z. Peng, X. R. Wen and J. P. Zhang, “Enhanced Capacitive Deionization Performance of Graphene/Carbon Nanotube Composites,” Journal of Materials Chemistry, Vol. 22, 2012, pp. 14696-14704. http://dx.doi.org/10.1039/c2jm31393f
[12] H. B. Li, L. K. Pan, C. Y. Nie, Y. Liu and Z. Sun, “Reduced Graphene Oxide and Activated Carbon Composites for Capacitive Deionization,” Journal of Materials Chemistry, Vol. 22, 2012, pp. 15556-15561. http://dx.doi.org/10.1039/c2jm32207b
[13] H. B. Li, L. D. Zou, L. K. Pan and Z. Sun, “Novel Graphene-Like Electrodes for Capacitive Deionization,” Environmental Science & Technology, Vol. 44, 2010, pp. 8692-8697. http://dx.doi.org/10.1021/es101888j
[14] N. A. Barakat, M. A. Kanjawal, I. S. Chronakis and H. Y. Kim, “Influence of Temperature on the Photodegrdation Process Using Ag-Doped TiO2 Nanostructures: Negative Impact with the Nanofibers,” Journal of Molecular Catalysis A: Chemical, Vol. 336, 2012, pp. 333-340.
[15] C. Kim, Y. I. Jeong, B. T. N. Ngoc, K. S. Yang, M. Kojima, Y. A. Kim, M. Endo and J. W. Lee, “Synthesis and Characterization of Porous Carbon Nanofibers with Hollow Cores through the Thermal Treatment of Electrospun copolymeric Nanofiber Webs,” Small, Vol. 3, 2006, pp. 91-95. http://dx.doi.org/10.1002/smll.200600243
[16] C. Kim, Y. I. Jeong, B. T. N. Ngoc, K. S. Yang, M. Kojima, Y. A. Kim, M. Endo and J. W. Lee, “Synthesis and Characterization of Porous Carbon Nanofibers with Hollow Cores through the Thermal Treatment of Electrospun Copolymeric Nanofiber Webs,” Small, Vol. 3, 2007, pp. 91-95. http://dx.doi.org/10.1002/smll.200600243
[17] C.-H. Hou and C.-Y. Huang, “A Comparative Study of Electrosorption Selectivity of Ions by Activated Carbon Electrodes in Capacitive Deionization,” Desalination, Vol. 314, 2013, pp. 124-129. http://dx.doi.org/10.1016/j.desal.2012.12.029
[18] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen and R. S. Ruoff, “Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide,” Carbon, Vol. 45, 2007, pp. 1558-1565. http://dx.doi.org/10.1016/j.carbon.2007.02.034
[19] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Advanced Materials, Vol. 22, 2010, pp. 3906-3924. http://dx.doi.org/10.1002/adma.201001068
[20] S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen and R. S. Ruoff, “Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the pResence of Poly(sodium 4-styre-nesulfonate),” Journal of Materials Chemistry, Vol. 16, 2006, pp. 155-158. http://dx.doi.org/10.1039/b512799h
[21] L. Zou, L. Li, H. Song and G. Morris, “Using Mesoporous Carbon Electrodes for Brackish Water Desalination,” Water Research, Vol. 42, 2008, pp. 2340-2348. http://dx.doi.org/10.1016/j.watres.2007.12.022

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.