Neutrinos as Superluminal Particles

Abstract

Based on parity violation in the weak interaction and evidences from neutrino oscillation, a natural choice is that neutrinos may be superluminal particles with tiny mass. To keep causality for Superluminal particles, a kinematic time under a non-standard form of the Lorentz transformation is introduced. A Dirac-type equation for Superluminal neutrinos is further investigated, and its solution is brief discussed. This equation can be written in two spinor equations coupled together via tiny mass while respecting maximum parity violation. As a consequence, parity violation implies that the principle of relativity is violated in the weak interaction.

Share and Cite:

T. Chang, "Neutrinos as Superluminal Particles," Journal of Modern Physics, Vol. 4 No. 12A, 2013, pp. 6-11. doi: 10.4236/jmp.2013.412A1002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Bertolucci, Presentation at Neutrino 2012 in Kyoto, on Behalf of the Borexino, ICARUS, LVD and OPERA Collaborations, 2012.
[2] P. A. Adamson, Presentation at Neutrino 2012 in Kyoto, on Behalf of the MINOS Collaborations, 2012.
[3] Y. Fukuda, et al., (Super-Kamiokande Collaboration), Physical Review Letters, Vol. 81, 1998, pp. 1562-1567.
[4] J. R. Klein for the SNO Collaboration, “Solar Neutrino results from SNO,” e-print hep-ex/0111040.
[5] J. N. Bahcall, M. C. Gonzalez-Garcia and C. Pena-Garay, “Global Analysis of Solar Neutrino Oscillations Including SNO Measurement,” JHEP 0108 (2001) 014, hep-ph/010 6258.
[6] F. P. An, J. Z. Bai, A. B. Balantekin, et al., Physical Review Letters, Vol. 108, 2012, Article ID: 171803.
http://dx.doi.org/10.1103/PhysRevLett.108.171803
[7] K. Hirata, et al., Physical Review Letters, Vol. 58, 1987, pp. 1490-1493.
http://dx.doi.org/10.1103/PhysRevLett.58.1490
[8] R. M. Bionta, et al., Physical Review Letters, Vol. 58, 1987, pp. 1494-1496.
http://dx.doi.org/10.1103/PhysRevLett.58.1494
[9] R. Cowsik, Physical Review D, Vol. 37, 1988, pp. 1685-1687.
http://dx.doi.org/10.1103/PhysRevD.37.1685
[10] T. J. Loredo, and D. Q. Lamb, Physical Review D, Vol. 65, 2002, Article ID: 063002.
http://dx.doi.org/10.1103/PhysRevD.65.063002
[11] R. Ehrlich, Astroparticle Physics, Vol. 35, 2012, pp. 625-628.
http://dx.doi.org/10.1016/j.astropartphys.2012.02.002
[12] T. D. Lee and C. N. Yang, Physical Review, Vol. 104, 1956, p. 254.
http://dx.doi.org/10.1103/PhysRev.104.254
[13] C. S. Wu, et al., Physical Review, Vol. 105, 1957, p. 1413.
http://dx.doi.org/10.1103/PhysRev.105.1413
[14] Review of Particles Physics. Journal of Physics, 2010, Vol. 37, p. 555.
[15] R. Ehrlich, Physical Review D, Vol. 60, 1999, Article ID: 17302.
http://dx.doi.org/10.1103/PhysRevD.60.017302
[16] R. Ehrlich, Physics Letters B, Vol. 493, 2000, pp. 229-232. http://dx.doi.org/10.1016/S0370-2693(00)01157-6
[17] T. Chang, Proceedings of the Sir Arthur Eddington Centenary Symposium, Vol. 3, 1986, p. 431.
[18] O. M. P. Bilaniuk, et al., American Journal of Physics, Vol. 30, 1962, p. 718.
http://dx.doi.org/10.1119/1.1941773
[19] G. Feinberg, Physical Review, Vol. 159, 1967, p. 1089.
http://dx.doi.org/10.1103/PhysRev.159.1089
[20] E. Recame, Foundations of Physics, Vol. 31, 2001, pp. 1119-1135.
http://dx.doi.org/10.1023/A:1017582525039
[21] C. Møller, “The Theory of Relativity,” Oxford University Press, Oxford, 1972, Section 8.5.
[22] T. Chang, Foundations of Physics, Vol. 18, 1988, p. 651. http://dx.doi.org/10.1007/BF00734567
[23] F. R. Tangherlini, Nuovo Cimento, Supplemento, Vol. 20, 1961, p. 1.
[24] T. Chang, Journal of Physics A: Mathematical and General, Vol. 12, 1979, p. L203.
http://dx.doi.org/10.1088/0305-4470/12/8/002
[25] J. Rembielinski, Physics Letters A, Vol. 78, 1980, p. 33.
http://dx.doi.org/10.1016/0375-9601(80)90799-9
[26] J. Rembielinski, International Journal of Modern Physics A, Vol. 12, 1997, p. 1677.
http://dx.doi.org/10.1142/S0217751X97001122
[27] T. Chang, D. G. Torr and D. R. Gagnon, Found. Phys. Lett., Vol. 1, 1988, p. 353.
http://dx.doi.org/10.1007/BF00696361
[28] D. J. Fixsen, et al., Physical Review Letters, Vol. 50, 1983, p. 620.
http://dx.doi.org/10.1103/PhysRevLett.50.620
[29] P. M. Lubin, et al., Physical Review Letters, Vol. 50, 1983, p. 616.
http://dx.doi.org/10.1103/PhysRevLett.50.616
[30] J. H. Christenson, et al., Physical Review Letters, Vol. 13, 1964, p. 138.
http://dx.doi.org/10.1103/PhysRevLett.13.138
[31] T. Chang and G.-J. Ni, “An Explanation of Negative Mass-Square of Neutrinos,” Fizika B (zagreb), Vol. 11, 2002, p. 49.
[32] G-J. Ni and T. Chang, Journal of Shanxi Normal University, Vol. 29, 2001, p. 1.
[33] T. Chang, Journal of Nuclear Science and Technology, Vol. 13, 2002, p. 129.
[34] A. Chodos, A. Hauser and V. A. Kostelecky, Physics Letters B, Vol. 150, 1985, p. 431.
http://dx.doi.org/10.1016/0370-2693(85)90460-5
[35] V. A. Kostelecky, “Topics in Quantum Gravity and Beyond,” World Scientific, Singapore, 1993.
[36] A. Chodos, “Light Cone Reflection and the Spectrum of Neutrinos,” 2012, arXiv: 1206.5974.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.