Share This Article:

Influence of Nonlocality on Amplification of Space Charge Waves in n-GaN Films

Abstract Full-Text HTML XML Download Download as PDF (Size:311KB) PP. 33-38
DOI: 10.4236/jemaa.2011.32006    4,982 Downloads   7,873 Views   Citations

ABSTRACT

It is investigated theoretically the amplification of space charge waves (SCWs) due to the negative differential conduc-tivity (NDC) in n-GaN films of submicron thicknesses placed onto a semi-infinite substrate. The influence of the nonlo-cal dependence of the average electron velocity on the electron energy is considered. The simplest nonlocal model is used where the total electron concentration is taken into account. The relaxation momentum and energy frequencies have been calculated. The influence of the nonlocality on NDC results in the decrease of the absolute value of its real part and appearance of the imaginary part. The calculation of the diffusion coefficient leads to essential errors. The simulations of spatial increments of the amplification of SCWs demonstrate that the nonlocality is essential at the fre-quencies f ? 150 GHz, and the amplification is possible up till the frequencies f ? 400 ??? 500 GHz.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

V. Grimalsky, S. Koshevaya, M. Tecpoyotl-T. and F. Diaz-A., "Influence of Nonlocality on Amplification of Space Charge Waves in n-GaN Films," Journal of Electromagnetic Analysis and Applications, Vol. 3 No. 2, 2011, pp. 33-38. doi: 10.4236/jemaa.2011.32006.

References

[1] A. Barybin, “Waves in Thin-Film Semiconductor Structures with Hot Electrons (in Russian),” Izdatel'stvo Nauka, Moscow, 1986.
[2] M. S. Shur, “GaAs Devices and Circuits,” Plenum Press, New York, 1987.
[3] D. G. Sannikov and D. I. Sementsov, “Waveguide Interaction between Light and an Amplified Space-Charge Wave,” Physics of the Solid State, Vol. 49, No. 3, March 2007, pp. 488-492. doi:10.1134/S1063783407030171
[4] V. Grimalsky, E. Gutierrez-D., A. Garcia-B. and S. Koshevaya, “Resonant Excitation of Microwave Acoustic Modes in n-GaAs Film,” Microelectronics Journal, Vol. 37, No. 5, March 2006, pp. 395-403. doi:10.1016/j.mejo. 2005.06.003
[5] G. E. Chaika, V. N. Malnev and M. I. Panfilov, “Interaction of Light with Space Charge Waves,” Proceedings of SPIE, Vol. 2795, 1996, pp. 279-286. doi:10.1117/12.2392 20
[6] A. Garcia-B., V. Grimalsky, E. Gutierrez-D. and S. Koshevaya, “Dispersion Relation for Two-Valley Quasi- Hydrodynamic Models in SCWs Propagation in n-GaAs Thin Films,” 25th International Conference on Microelectronics (MIEL 2006), Belgrade, Serbia and Montenegro, 14-17 May 2006.
[7] S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren, “GaN: Processing, Defects, and Devices,” Journal of Applied Physics, Vol. 86, No. 1, July 1999, pp. 1-79. doi:10.1063/1.371145
[8] S. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III-Nitrides: Growth, Characterization, and Properties,” Journal of Applied Physics, Vol. 87, No. 3, February 2000, pp. 965-1006. doi:10.1063/1.371971
[9] V. Gruzhinskis, P. Shiktorov, E. Starikov and J. H. Zhao, “Comparative Study of 200-300 GHz Microwave Power Generation in GaN TEDs by the Monte Carlo Technique,” Semiconductor Science and Technology, Vol. 16, No. 8, August 2001, pp. 798-805. doi:10.1088/0268-1242/16/9/311
[10] M. Levinshtein, S. Rumyantsev, and M. Shur, “Properties of Advanced Semiconductor Materials: GaN, AlN, InN,” Wiley, New York, 2001.
[11] S. O. Kasap, P. Capper, Eds., “Springer Handbook of Electronic and Photonic Materials, Chapter 32, Group III Nitrides,” Springer, New York, 2007, pp. 753-804.
[12] V. V. Grimalsky, S. V. Koshevaya, L. M. Gaggero-S. and F. Diaz-A., ‘‘Excitation of Hypersound Due to Coupling with Space Charge Waves in GaN Films,’’ Progress in Electromagnetics Research International Symposium PIERS-2007, Beijing, March 26-30, pp. 244-248.
[13] B. E. Foutz, L. F. Eastman, U. V. Bhapkar and M. S. Shur, “Comparison of High Field Electron Transport in GaN and GaAs,” Applied Physics Letters, Vol. 70, No. 21, May 1997, pp. 2849-2851. doi:10.1063/1.119021
[14] B. Aslan, L. F. Eastman and Q. Diduck, “Simulation and Experimental Results on GaN Based Ultra-Short Planar Negative Differential Conductivity Diodes for THz Power Generation,” International Journal of High Speed Electronics and Systems (IJHSES), Vol. 19, No. 1, March 2009, pp. 1-6. doi:10.1142/S0129156409006035
[15] G. Simin, M. S. Shur and R. Gaska, “5-Terminal THz GaN Based Transistor with Field- and Space-Charge Control Electrodes,” International Journal of High Speed Electronics and Systems (IJHSES), Vol. 19, No. 1, March 2009, pp. 7-14. doi:10.1142/S0129156409006047
[16] M. Mukherjee, S. Banerjee and J. P. Banerjee, “Dynamic Characteristics of III-V and IV-IV Semiconductor Based Transit Time Devices in the Terahertz Regime: A Comparative Analysis,” Terahertz Science and Technology, Vol. 3, No. 3, September 2010, pp. 97-109.
[17] V. N. Sokolov, K. W. Kim, V. A. Kochelap and D. L. Woolard, “Terahertz Generation in Submicron GaN Diodes within the Limited Space-Charge Accumulation Regime,” Journal of Applied Physics, Vol. 98, No. 6, September 2005, pp. 064507-0645013. doi:10.1063/1.2060956
[18] A. Castro-R., A. Garci?a-B. and F. Trejo-M., “Nonlinear Interaction of Space Charge Waves in GaN Films,” Proceedings of 2010 7th IEEE International Conference on Electrical Engineering Computing Science and Automatic Control (CCE), Mexico, 8-10 September 2010, pp. 604- 607. doi:10.1109/ICEEE.2010.5608615
[19] V. V. Grimalsky, S. V. Koshevaya, L. M. Gaggero-S. and F. Diaz-A., “Excitation of Hypersound Due to Coupling with Space Charge Waves of Millimeter Wave Range in GaN Films,” Journal of Infrared, Millimeter and Terahertz Waves, Vol. 30, No. 3, March 2009, pp. 233-242. doi:10.1007/s10762-008-9440-z
[20] S. Banerjee, M. Mukherjee and J. P. Banerjee, “Bias Current Optimization of Wurtzite-GaN DDR IMPATT Diode for High Power Operation at THz Frequencies,” International Journal of Advanced Science and Technology, Vol. 16, No. 3, March 2010, pp. 11-20.
[21] P. R. Tripathy, A. K. Panda and S. P. Pati, “Prospects of Wide Band Gap Material ZB-GaN over Low Band Gap GaAs-Based IMPATT Devices,” International 4th IEEE Conference on Computers and Devices for Communication (CODEC-2009), Institute of Radio Physics & Electronics University of Calcuta, 14-16 December 2009, Kolkata, pp. 1-4.
[22] S. Hauguth, V. Lebedev, Ch. Mauder, F. Niebelschütz, H.-J. Büchner, G. J?ger and O. Ambacher, “Novel III-Ni- tride Based Transparent Photodetectors for Standing Wave Interferometry,” Physica Status Solidi (a), Vol. 205, No. 8, August 2008, pp. 2080-2084. doi:10.1002/pssa.200778888
[23] J. T. Lü and J. C. Cao, “Terahertz Generation and Chaotic Dynamics in GaN NDR Diode,” Semiconductor Science and Technology, Vol. 19, No. 4, April 2004, pp. 451-456.
[24] M. Levinstein, S. Rumyantsev and M. Shur, “Handbook Series on Semiconductor Parameters,” World Scientific, London, 1996.
[25] J. Pozhela and A. Reklaitis, “Electron Transport Properties in GaAs at High Electric Fields,” Solid-State Electronics, Vol. 23, No. 9, September 1980, pp. 927-933. doi:10.1016/0038-1101(80)90057-X
[26] H. D. Rees, “Hot Electron Effects at Microwave Frequencies in GaAs,” Solid State Communications, Vol. 7, No. 2, February 1969, pp. 267-269. doi:10.1016/0038-1098(69) 90396-2

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.