Facile Synthesis of Polypyrrole/Titanate Core-Shell Nanorods and Their Electrorheological Characteristics
Jiexu Zhang, Ying He, Lijun Ji
DOI: 10.4236/msa.2011.22015   PDF    HTML     5,282 Downloads   9,736 Views   Citations

Abstract

In this work, polypyrrole (PPy)/titanate (TN) composite nanorods were successfully synthesized using cetyl trimethyl-ammonium bromide (CTAB) as a structure-directing agent by in situ chemical oxidative polymerization. The structural characterization indicated that the new composite rods were core (TN)-shell (PPy) nanostructure with the average diameter in the range of 250-300 nm. Further, this semiconducting composite can be used as a dispersed phase in silicone oil for a new electrorheological (ER) fluid, and its ER behavior was investigated under steady and oscillatory shear. It was found that the PPy/TN fluid showed typical ER characteristics under an external electric field.

Share and Cite:

J. Zhang, Y. He and L. Ji, "Facile Synthesis of Polypyrrole/Titanate Core-Shell Nanorods and Their Electrorheological Characteristics," Materials Sciences and Applications, Vol. 2 No. 2, 2011, pp. 111-115. doi: 10.4236/msa.2011.22015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. B. Ying and X. P. Zhao, “Titanate Nano-Whisker Electrorheological Fluid with High Suspended Stability and ER Activity,” Nanotechnology, Vol. 17, No. 1, 2006, pp. 192-196. doi:10.1088/0957-4484/17/1/031
[2] Y. D. Liu, F. F. Fang and H. J. Choi, “Silica Nanoparticle Decorated Conducting Polyaniline Fibers and Their Electrorheology,” Materials Letters, Vol. 64, No. 2, 2010, pp. 154-156. doi:10.1016/j.matlet.2009.10.031
[3] Y. Cheng, K. Wu, F. Liu, J. Guo, X. Liu, G. Xu and P. Cui, “Facile Approach to Large-Scale Synthesis of 1D Calcium and Titanium Precipitate (CTP) with High Electrorheological Activity,” ACS Applied Materials & Interfaces, Vol. 2, No. 3, 2010, pp. 621-625. doi:10.1021/am900841m
[4] H. Block and J. P. Kelly, “Electro-Rheology,” Journal of Physics D: Applied Physics, Vol. 21, No. 12, 1998, pp. 1661-1667. doi:10.1088/0022-3727/21/12/001
[5] T. Hao, “Electrorheological Fluids,” Advanced Materials, Vol. 13, No. 24, 2001, pp. 1847-1857. doi:10.1002/1521-4095(200112)
[6] Q. Cheng, Y. He, V. Pavlinek, C. Li and P. Saha, “Surfactant-Assisted Polypyrrole/Titanate Composite Nanofibers: Morphology, Structure and Electrical Properties,” Synthetic Metals, Vol. 158, No. 21-24, 2008, pp. 953-957. doi:10.1016/j.synthmet.2008.06.022
[7] D. V. Bavykin, J. M. Friedrich and F. C. Walsh, “Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications,” Advanced Materials, Vol. 18, No. 21, 2006, pp. 2807-2824. doi:10.1002/adma.200502696
[8] Y. Lan, X. P. Gao, H. Y. Zhu, Z. F. Zheng, T. Y. Yan, F. Wu, S. P. Ringer and D. Y. Song, “Titanate Nanotubes and Nanorods Prepared from Rutile Powder,” Advanced Functional Materials, Vol. 15, No. 8, 2005, pp. 1310-1318. doi:10.1002/adfm.200400353
[9] G. I. Mathys and V. T. Truong, “Spectroscopic Study of Thermo-Oxidative Degradation of Polypyrrole Powder by FT-IR,” Synthetic Metals, Vol. 89, No. 2, 1997, pp. 103-109. doi:10.1016/S0379-6779(98)80122-7
[10] O. Harizanov, A. Harizanova and T. Ivanova, “Formation and Characterization of Sol-Gel Barium Titanate,” Materials Science and Engineering: B, Vol. 106, No. 2, 2004, pp. 191-195. doi:10.1016/j.mseb.2003.09.014
[11] Y. T. Lim, J. H. Park and O. O. Park, “Improved Electrorheological Effect in Polyaniline Nanocomposite Suspensions,” Journal of Colloid and Interface Science, Vol. 245, No. 1, 2002, pp. 198-203. doi:10.1006/jcis.2001.7983
[12] H.-J. Choi, M.-S. Cho and K. To, “Electrorheological and Dielectric Characteristics of Semiconductive Polyaniline-Silicone Oil Suspensions,” Physica A: Statistical Mechanics and Its Applications, Vol. 254, No. 1-2, 1998, pp. 272-279. doi:10.1016/S0378-4371(98)00005-3
[13] Q. Cheng, V. Pavlinek, A. Lengalova, C. Li, T. Belza and P. Saha, “Electrorheological Properties of New Mesoporous Material with Conducting Polypyrrole in Mesoporous silica,” Microporous and Mesoporous Materials, Vol. 94, No. 1-3, 2006, pp. 193-199. doi:10.1016/j.micromeso.2006.03.039
[14] S.-G. Kim, J.-W. Kim, M.-S. Cho, H.-J. Choi and M.-S. Jhon, “Viscoelastic Characterization of Semiconducting Dodecylbenzenesulfonic Acid Doped Polyaniline Electrorheological Suspensions,” Journal of Applied Polymer Science, Vol. 79, No. 1, 2001, pp. 108-114. doi:10.1002/1097-4628(20010103)
[15] M. S. Cho, H. J. Choi and W. S. Ahn, “Enhanced Electrorheology of Conducting Polyaniline Confined in MCM-41 Channels,” Langmuir, Vol. 20, No. 1, 2004, pp. 202-207. doi:10.1021/la035051z

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.