Share This Article:

Carbohydrate analysis by methanolysis method and application to compositional analysis of transparent exopolymer particles

Abstract Full-Text HTML Download Download as PDF (Size:232KB) PP. 11-17
DOI: 10.4236/abb.2013.49A002    4,840 Downloads   7,157 Views  

ABSTRACT

Measurement of uronic acids (URAs) which are a group of acidic sugar, would be useful for the understanding of dynamics of bacterial extracellular polymeric substances (EPS) in marine environments. However, the URA analysis using traditional hydrolysis method which is used for neutral sugar analysis poses serious problems in URA that is unstable under hydrolysis. We developed the methanolysis method, which deploymerizes polysaccharides while retaining quantitative information. Our method was applied to coastal seawater, and the URAs distribution was compared with that of transparent exopolymer particles (TEP) which are acidic sugar containing particles. Since the relationship of URA with TEP was relatively weak, URA-containing polysaccharides present in bacterial EPS would not participate as a structural component of TEP.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Wada, S. , Iseki, K. and Hama, T. (2013) Carbohydrate analysis by methanolysis method and application to compositional analysis of transparent exopolymer particles. Advances in Bioscience and Biotechnology, 4, 11-17. doi: 10.4236/abb.2013.49A002.

References

[1] Hama, T. and Yanagi, K. (2001) Production and neutral aldose composition of dissolved carbohydrates excreted by natural marine phytoplankton populations. Limnology and Oceanography, 46, 1945-1955. doi:10.4319/lo.2001.46.8.1945
[2] Amon, R.M.W. and Benner, R. (2003) Combined neutral sugars as indicators of the diagenetic state of dissolved organic matter in the Arctic Ocean. Deep Sea Research Part I, 50, 151-169. doi:10.1016/S0967-0637(02)00130-9
[3] Hama, T., Yanagi, K. and Hama, J. (2004) Decrease in molecular weight of photosynthetic products of marine phytoplankton during early diagenesis. Limnology and Oceanography, 49, 471-481. doi:10.4319/lo.2004.49.2.0471
[4] Hernes, P.J., Hedges. J.I., Peterson, M.L., Wakeham, S.G. and Lee, C. (1996) Neutral carbohydrate geochemistry of particulate material in the central equatorial Pacific. Deep Sea Research Part II, 43, 1181-1204. doi:10.1016/0967-0645(96)00012-4
[5] Hamanaka, J., Tanoue, E., Hama, T. and Handa, N. (2002) Production and export of particulate fatty acids, carbohydrates and combined amino acids in the euphotic zone. Marine Chemistry, 77, 55-69. doi:10.1016/S0304-4203(01)00075-5
[6] Panagiotopoulos, C. and Sempéré, R. (2005) The molecular distribution of combined aldoses in sinking particles in various oceanic conditions. Marine Chemistry, 95, 31-49. doi:10.1016/j.marchem.2004.07.005
[7] Decho, A.W. (1990) Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes. Oceanography and Marine Biolology Annual Review, 28, 73-153.
[8] Bhaskar, P.V. and Bhosle, N.B. (2005) Microbial extracellular polymeric substances in marine biogeochemical processes. Current Science, 88, 45-53.
[9] Engel, A. (2000) The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom. Journal of Plankton Research, 22, 485-497. doi:10.1093/plankt/22.3.485
[10] Alldredge, A.L., Passow, U. and Logan, B.E. (1993) The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Research Part I, 40, 1131-1140. doi:10.1016/0967-0637(93)90129-Q
[11] Passow, U. (2002) Transparent exopolymer particles (TEP) in aquatic environments. Progress in Oceanography, 55, 287-333. doi:10.1016/S0079-6611(02)00138-6
[12] Logan, B.E., Passow, U., Alldredge, A.L., Grossart, H.-P. and Simon, M. (1995) Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep Sea Research Part II, 42, 203-214. doi:10.1016/0967-0645(95)00012-F
[13] Passow, U. and Alldredge, A.L. (1999) Do transparent exopolymer particles (TEP) inhibit grazing by the euphasiid Euphausia pacifica? Journal of Plankton Research, 21, 2203-2217. doi:10.1093/plankt/21.11.2203
[14] Verdugo, P., Alldredge, A.L., Azam, F., Kirchman, D.L., Passow, U. and Santschi, P.H. (2004) The oceanic gel phase: A bridge in the DOM-POM continuum. Marine Chemistry, 92, 67-85. doi:10.1016/j.marchem.2004.06.017
[15] Panagiotopoulos, C. and Sempéré, R. (2005) Analytical methods for the determination of sugars in marine samples: A historical perspective and future directions. Limnology and Oceanography Methods, 3, 419-454. doi:10.4319/lom.2005.3.419
[16] Blake, J.D. and Richards, G.N. (1968) Problems of lactonisation in the analysis of uronic acids. Carbohydrate Research, 8, 275-281. doi:10.1016/S0008-6215(00)82233-8
[17] Chambers, R.E. and Clamp, R.E. (1971) An assessment of methanolysis and other factors used in the analysis of carbohydrate-containing materials. Biochemical Journal, 125, 1009-1018.
[18] Doco, T., O’Neill, M.A. and Pellerin, P. (2001) Determination of the neutral and acidic glycosyl-residue compositions of plant polysaccharides by GC-EI-MS analysis of the trimethylsilyl methyl glycoside derivatives. Carbohydrate Polymers, 46, 249-259. doi:10.1016/S0144-8617(00)00328-3
[19] Mejanelle, P., Bleton, J., Tchapla, A. and Goursaud, S. (2002) Gas chromatography-mass spectrometric analysis of monosaccharides after methanolysis and trimethylsilylation. Potential for the characterization of substances of vegetal origin: Application to the study of museum objects. Journal of Chromatography Library, 66, 845-902. doi:10.1016/S0301-4770(02)80049-5
[20] Passow, U. and Alldredge, A.L. (1995) A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnology and Oceanography, 40, 1326-1335. doi:10.4319/lo.1995.40.7.1326
[21] Borch, N.H. and Kirchman, D.L. (1997) Concentration and composition of dissolved combined neutral sugars (polysaccharides) in seawater determined by HPLC-PAD. Marine Chemistry, 57, 85-95. doi:10.1016/S0304-4203(97)00002-9
[22] Myklestad, S.M., Sanøy, E.and Hestmann, S. (1997) A sensitive and rapid method for analysis of dissolved mono-and polysaccharides in seawater. Marine Chemistry, 56, 279-286. doi:10.1016/S0304-4203(96)00074-6
[23] Skoog, A. and Benner, R. (1997) Aldoses in various size fractions of marine organic matter: Implications for carbon cycling. Limnology and Oceanography, 42, 1803-1813. doi:10.4319/lo.1997.42.8.1803
[24] Kirchman, D.L., Meon, B., Ducklow, H.W., Carlson, C.A., Hansell, D.A. and Steward, G.F. (2001) Glucose fluxes and concentrations of dissolved combined neutral sugars (polysaccharides) in the Ross Sea and Polar Front Zone, Antarctica. Deep Sea Research Part II, 48, 4179-4197. doi:10.1016/S0967-0645(01)00085-6
[25] Benner, R. (2002) Chemical composition and reactivity. In: Hansell, D.A. and Carlson, C.A., Eds., Biogeochemistry of Marine Dissolved Organic Matter, Academic Press, San Diego, 59-90. doi:10.1016/B978-012323841-2/50005-1
[26] Pakuski, J.D. and Benner, R. (1994) Abundance and distribution of carbohydrates in the ocean. Limnology and Oceanography, 39, 930-940. doi:10.4319/lo.1994.39.4.0930
[27] Amon, R.M.W., Fitznar, H.-P. and Benner, R. (2001) Linkage among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnology and Oceanography, 46, 287-297. doi:10.4319/lo.2001.46.2.0287
[28] Hung, C-C., Guo, L., Santschi, P.H., Alvarado-Quiroz, N. and Haye, J.M. (2003) Distribution of carbohydrate species in the Gulf of Mexico. Marine Chemistry, 81, 119-135. doi:10.1016/S0304-4203(03)00012-4
[29] Khodse, V.B., Fernandes, L., Bhosle, V.V., Fernandes, V., Matondkar, S.G.P. and Bhushan, R. (2007) Distribution and seasonal variation of concentrations of particulate carbohydrates and uronic acids in the northern Indian Ocean. Marine Chemistry, 103, 327-346. doi:10.1016/j.marchem.2006.10.003
[30] Manners, D.J. and Sturgeon, R.J. (1982) Reserve carbohydrates of algae, fungi, and lichens. In: F. A. Loewus and W. Tanner, Eds., Intracellular Carbohydrates, Springer-Verlag, Berlin, 472-514.
[31] Hanamachi, Y., Hama, T. and Yanai, T. (2008) Decomposition process of organic matter derived from freshwater phytoplankton. Limnology and Oceanography, 9, 57-69.
[32] Simon, M., Grossart, H-P., Schweitzer, B. and Ploug, H. (2002) Microbial ecology of organic aggrefates in aquatic ecosystems. Aquatic Microbial Ecology, 28, 175-211. doi:10.3354/ame028175
[33] Ramus, J. (1977) Alcian blue: A quantitative aqueous assay for algal acid and sulfated polysaccharides. Journal of Phycology, 13, 345-348.
[34] Mopper, K. (1977) Sugars and uronic acids in sediment and water from the Black Sea and North Sea with emphasis on analytical techniques. Marine Chemistry, 5, 585-603. doi:10.1016/0304-4203(77)90044-5
[35] Zhou, J. and Mopper, K. (1998) The role of surface-active carbohydrates in the formation of transparent exopolymer particles by bubble adsorption of seawater. Limnology and Oceanography, 43, 1860-1871.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.