Cooperative apoptosis of coelomocytes of the holothurian Eupentacta fraudatrix and its modulation by dexamethasone

Abstract

The capacities of phagocytes of subpopulation P1 (F) and morula cells (MC) of holothurian Eupentacta fraudatrix to modulate apoptosis of each other as well as cytokine-dependent mechanisms and hormonal regulation of these cells’s interaction were studied. The 18-h treatment of F with supernatants, obtained after centrifugation of MC preincubated for 3 h with phosphate buffered saline (PSB) at the temperature of 22℃ (SMC3) resulted in a significant growth of apoptosis level. A 30-min incubation of F with supernatants of MC, preincubated for 24 h (SMC24), on the contrary, reduced the apoptosis level and increased the level of interleukine-1α (IL-1α)-like substances, and 24-h incubation did not influence apoptosis and reduced level of IL-1α-like substances. Thus, proapoptotic effects of MC’s supernatants in F inversely depended on time of their preincubation with PSB and directly on time of incubation with F. Additionally, this effect was opposite to variations in the level of IL-1α-like substances. The level of apoptosis declined after 30 min of incubation but elevated after 24 h at the inverse treatment of MC with supernatant, obtained after preincubation of F during 24 h (SF24). The level of IL-1α-like substances dropped after 30 min and insignificantly decreased after 24 h. Hence, SF24 proapoptotic effect directly depended on time of incubation with MC and did not correspond to variations in the level of IL-1α-like substances. 100 μM dexamethasone stimulated apoptosis in F and MC in an inverse time-dependent manner during 24-h preincubation, and supernatants of cell suspensions obtained after such preincubations, stimulated apoptosis and reduced the IL-1α-like substances level in target cells at both types of interaction. IL-1α-like substances are supposed to be mediators for MC’s effects in F, but not for F’s action on MC. In holothurians, steroid hormones apparently may participate in the regulation of the immune response and cell cooperation.

Share and Cite:

Zaika, O. and Dolmatova, L. (2013) Cooperative apoptosis of coelomocytes of the holothurian Eupentacta fraudatrix and its modulation by dexamethasone. Advances in Bioscience and Biotechnology, 4, 908-917. doi: 10.4236/abb.2013.49119.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kudryavtsev, I.V., Dyachkov, I.S., Kazakov, A.A., Kanaikin, D.P., Khazarova, A.D. and Polevschikov, A.V. (2005) Humoral reactions of innate immunity in the sea star Asterias rubens. Jurnal Evolutsionnoi Biokhimii Physiologii, 41, 23-28.
[2] Santiago, P., Roig-Lopez, J.L., Santiago, C. and Garcia-Arraras, J.E. (2000) Serum amyloid A protein in an echinoderm: Its primary structure and expression during intestinal regeneration in the sea cucumber Holothuria glaberrima. Journal of Experimental Zoology, 288, 335-344. doi:10.1002/1097-010X(20001215)288:4<335::AID-JEZ6>3.0.CO;2-1
[3] Malagoli, D. (2010) Cytokine network in invertebrates: The very next phase of comparative immunology. Invertebrate Survival Journal, 7, 146-148.
[4] Chia, F. and Xing, J. (1996) Echinoderm coelomocytes. Zoological Studies, 35, 231-254.
[5] Isaeva, V.V. and Korenbaum, E.S. (1989). Defence functions of coelomocytes and immunity of echinoderms. Biologiya Morya, 6, 3-14.
[6] Arizza, V., Giaramita, F., Parrinello, D., Cammarata, M. and Parrinello N. (2007) Cell cooperation in coelomocyte cytotoxic activity of Paracentrotus lividus coelomocytes. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 147, 389-394. doi:10.1016/j.cbpa.2007.01.022
[7] Nguyen, H.X. and Tidball, J.G. (2002) Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro. The Journal of Physiology, 547, 125-132. doi:10.1113/jphysiol.2002.031450
[8] Costantini, C., et al. (2011) Human neutrophils interact with both 6-sulfo LacNAc + DC and NK cells to amplify NK-derived IFN{gamma}: Role of CD18, ICAM-1, and ICAM-3. Blood, 117, 1677-1686. doi:10.1182/blood-2010-06-287243
[9] Tsygan, V.N. (2004) Role of apoptosis in regulation of immune response. Obzory Klinicheskoy Pharmakologii Therapii, 3, 62-66.
[10] Dolmatova, L.S. and Zaika, O.A. (2010) Comparative effects of PGE2 on different types of immune cells in holothurian Eupentacta fraudatrix. In: Goodwin, G.M., Ed., Cell Biology Research Progress. Prostaglandins: Biochemistry, Functions, Types and Roles, Nova Science Publishers, New York, 47-64.
[11] Greenstein, S., Ghias, K., Krett, N.L. and Rosen, T. (2002) Mechanisms of glucocorticorticoid-mediated apoptosis in hematological malignancies. Clinical Cancer Research, 8, 1681-1694.
[12] Herold, M.J., McPherson, K.J. and Reichardt, H.M. (2006) Glucocorticoids in T cell apoptosis and function. Cellular and Molecular Life Sciences, 63, 60-72. doi:10.1007/s00018-005-5390-y
[13] Chernysheva, M.P. (1995) Animal hormones: Introduction to physiological endocrinology. Glagol, Sankt-Peterburg.
[14] Lafont, R. and Mathieu, M. (2007) Steroids in aquatic invertebrates. Ecotoxicology, 16, 109-130. doi:10.1007/s10646-006-0113-1
[15] Gurst, J.E., Sheikh, Y.M. and Djerassi, C. (1973) Synthesis of corticosteroids from marine sources. Journal American Chemical Society, 95, 628-629. doi:10.1021/ja00783a076
[16] DellaGreca, M. (2004) Toxicity of prednisolone, dexamethasone and their photochemical derivatives on aquatic organisms. Chemosphere, 54, 629-637. doi:10.1016/j.chemosphere.2003.09.008
[17] Dolmatova, L.S. and Zaika, O.A. (2007) Apoptosis-modulating effect of prostaglandin Е2 in coelomocytes of sea cucumber Eupentacta fraudatrix depends on antioxidant enzyme status of cells. Biology Bulletin of the Russian Academy of Sciences, 3, 221-229.
[18] Dolmatov, I.Yu., Dolmatova, L.S., Shitkova, O.A. and Kovaleva, A.L. (2004) Dexamethasone-induced apoptosis in phagocytes of holothurian Eupentacta fraudatrix. In: Heinzeller, T. and Nebelsick, J.H., Eds., Echinoderms, A.A. Balkema Publishers, Leiden, 105-119. doi:10.1201/9780203970881.ch20
[19] Odintsova, N.A. (2001) Bases of cultivation of marine invertebrate cells. Dalnauka, Vladivostok.
[20] Pramanick, D., Forstova, J. and Pivec, L. (1976) 4 M guanidine hydrochloride applied to the isolation of DNA from different sources. FEBS Letters, 62, 81-84. doi:10.1016/0014-5793(76)80021-X
[21] Gafurov, Yu.M. (1999) Deoxyribonucleases. Methods of investigation and properties. Dalnauka, Vladivostok.
[22] Pollack, A. and Ciancio, G. (1990) Cell cycle phase specific analysis of cell viability using Hoechst 33342 and propidium iodide after ethanol preservation. Methods in Cell Biology, 33, 19-24. doi:10.1016/S0091-679X(08)60508-7
[23] Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. doi:10.1016/0003-2697(76)90527-3
[24] Fierro, I.M., Fidalgo, C., Canedo, R.M., Cunha, F.Q. and Ferreira, S.H. (1995) An increase in nitric oxide produced by rat peritoneal neutrophils is not involved in cell apoptosis. Mediators Inflammation, 4, 222-228. doi:10.1155/S0962935195000366
[25] Gromykhina, N.Yu. and Kozlov, V.A. (1996) Prostaglandin-dependent mechanisms of synthesis and action of immune control factors of macrophage and non-macrophage origin. Immunologiya, 5, 29-34.
[26] Shirokova, A.V. (2007) Apoptosis. Signal ways and changes in cell ion and water balances. Cytologia, 49, 385-394.
[27] Blagosklonny, M.V. (2002) P53: An ubiquitous target of anticancer drugs. International Journal of Cancer, 98, 161-166. doi:10.1002/ijc.10158
[28] Bragado, P., Armesilla, A., Silva, A. and Porras, A. (2007) Apoptosis by cisplatin requires p53 mediated p38 alpha MAPK activation through ROS generation. Apoptosis, 12, 1733-1742. doi:10.1007/s10495-007-0082-8
[29] Yang, M., Yuan, P., Li, P., Chen, Z., Chen, A., Li, S. and Hu, C. (2012) Interferon regulatory factor 4 binding protein is a novel p53 target gene and suppresses cisplatin-induced apoptosis of breast cancer cells. Molecular Cancer, 11, 54. doi:10.1186/1476-4598-11-54
[30] Mayanskii, A.N., Mayanskii, N.A., Zaslavskaya, M.I., Pozdneev, N.M. and Pleskova, S.N. (1999) Apoptosis of neutrophils. Immunologiya, 6, 11-20.
[31] Torres, R.C., Batista, M.M., Pons, A.H., Silva, A.R., Cordeiro, R.S., Martins, M.A., Silva, P.M. and Carvalho, V.F. (2012) Activation of PPARγ by restores mast cell numbers and reactivity in alloxan-diabetic rats by reducing the systemic glucocorticoid levels. European Journal Pharmacology, 691, 261-267. doi:10.1016/j.ejphar.2012.06.010
[32] Nakano, N., et al. (2009) Notch signaling confers antigen-presenting cell functions on mast cells. Journal of Allergy and Clinical Immunology, 123, 74-81. doi:10.1016/j.jaci.2008.10.040
[33] Meng, H., et al. (1995) Mast cells induce T-cell adhesion to human fibroblasts by regulating intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression. Journal of Investigative Dermatology, 105, 789-796. doi:10.1111/1523-1747.ep12326075
[34] Valitutti, S. and Espinosa, E. (2010) Cognate interactions between mast cells and helper T lymphocytes. Self Nonself, 1, 114-122. doi:10.4161/self.1.2.11795
[35] Bhattacharjee, R., Xiang, W., Wang, Y., Zhang, X. and Billiar, T.R. (2012) cAMP prevents TNF-induced apoptosis through inhibiting DISC complex. Biochemical Biophysical Research Communications, 423, 85-90. doi:10.1016/j.bbrc.2012.05.087
[36] Dalpke, A., Heeg, K., Bartz, H. and Baetz, A. (2008) Regulation of innate immunity by suppressor of cytokine signaling (SOCS) proteins. Immunobiology, 213, 225-235. doi:10.1016/j.imbio.2007.10.008
[37] Janeway, C.A. (2001) How the immune system protects the host from infection. Microbes Infection, 3, 1167-1171. doi:10.1016/S1286-4579(01)01477-0
[38] Siva-Jothy, M.T. (2006) Trauma, disease and collateral damage: Conflict in cimicids. Philosophical Transactions of the Royal Society B, Biological Sciences, 361, 269-275. doi:10.1098/rstb.2005.1789
[39] Kraaij, M.D., der Kooij, S.W., Reinders, M.E., Koekkoek, K., Rabelink, T.J., van Kooten, C. and Gelderman, K.A. (2011) Dexamethasone increases ROS production and T cell suppressive capacity by anti-inflammatory macrophages. Molecular Immunology, 49, 549-557. doi:10.1016/j.molimm.2011.10.002
[40] Eliseykina, M.G. and Magarlamov, Yu. (2002) Morphology of coelomocytes of holothurians Apostichopus japonicus (Aspidochirota: Stichopodidae) and Cucumaria japonica (Dendrochirota: Cucumariidae). Biologia Morya, 28, 214-219.
[41] Ballarin, L., Franchini, A., Ottaviani, E. and Sabbadin, A. (2001) Morula cells as the major immunomodulatory hemocytes in ascidians: Evidences from the colonial species Botryllus schlosseri. Biological Bulletin, 201, 59-64. doi:10.2307/1543526
[42] McAllister, C.S., et al. (2012) TLR3, TRIF, and caspase 8 determine double-stranded RNA-induced epithelial cell death and survival in vivo. Immunology, 190, 418-427.
[43] Schmidt, S., Rainer, J., Pioner, C., Presul, E., Rimi, S. and Kofler, R. (2004) Glucocorticoid-induced apoptosis and glucocorticoid resistance: Molecular mechanisms and clinical relevance. Cell Death and Differentiation, 11, S45-S55. doi:10.1038/sj.cdd.4401456
[44] Tauler, P., Aguiló, A., Gimeno, I., Guix, P., Tur, J.A. and Pons, A. (2004) Different effects of exercise tests on the antioxidant enzyme activities in lymphocytes and neutrophils. Journal Nutritional Biochemistry, 15, 479-484. doi:10.1016/j.jnutbio.2004.03.002
[45] Corcoran, A. and Cotter, T.G. (2013) Redox regulation of protein kinases. FEBS Journal, 280, 1944-1965. doi:10.1111/febs.12224
[46] Dolmatova, L.S., Romashina, V.V. and Eliseykina, M.G. (2004) Antioxidant enzymatic activity of coelomocytes of the Far East sea cucumber Eupentacta fraudatrix. Journal of Evolutionary Biochemistry and Physiology, 40, 126-135. doi:10.1023/B:JOEY.0000033803.35634.46
[47] Ren, D.L., Wang, H.K., Liu, J.Q., Zhang M.H. and Zhang, W.C. (2012) ROS-induced ZNF580 expression: A key role for H2O2/NF-κB signaling pathway in vascular endothelial inflammation. Molecular and Cellular Biochemistry, 359, 183-191. doi:10.1007/s11010-011-1013-0
[48] Padgett, L.E., Broniowska, K.A., Hansen, P.A., Corbett, J.A. and Tse, H.M. (2013) The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Annals of the New York Academy of Sciences, 1281, 16-35. doi:10.1111/j.1749-6632.2012.06826.x
[49] Jaramillo, M.C., Frye, J.B., Crapo, J.D., Briehl, M.M. and Tome, M.E. (2009) Increased manganese superoxide dismutase expression or treatment with a manganese porphyrin potentiates dexamethasone-induced apoptosis in lymphoma cells. Cancer Research, 69, 5450-5457. doi:10.1158/0008-5472.CAN-08-4031

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.