Ub Combination Enhanced Cellular Immune Response Elicited by HSP65 DNA Vaccine against Mycobacterium tuberculosis

Abstract

This study observed the immune response induced by a HSP65 DNA vaccine fused with UbGR against Mycobacterium tuberculosis. BALB/c mice were inoculated with HSP65 DNA vaccine, UbGR-fused HSP65 DNA vaccine (Ub-GR-HSP65) and blank vector respectively. HSP65 DNA vaccine elicited a Thl-polarized immune response. The Thl-type cytokine (IFN-γ) and proliferative T cell responses from spleen were improved significantly in UbGR-HSP65 group, compared with those in HSP65 DNA vaccine group. Furthermore, this fusion DNA vaccine also led to an increased ratio of IgG2ato IgGl and the cytotoxicity of T cells. IFN-γ intracellular staining of splenocytes indicated that UbGR-HSP65 fusion DNA vaccine could activate CD4+ and CD8+ T cells, with much higher CD8+ T cells. Thus, this study demonstrated that the UbGR fusion could improve HSP65-specific cellular immune responses, which is helpful to protect against TB infection.

Share and Cite:

Q. Wang, C. Lei and Q. Liu, "Ub Combination Enhanced Cellular Immune Response Elicited by HSP65 DNA Vaccine against Mycobacterium tuberculosis," World Journal of Vaccines, Vol. 3 No. 3, 2013, pp. 89-97. doi: 10.4236/wjv.2013.33013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. D. Harries and C. Dye, “Tuberculosis,” Annals of Tropical Medicine and Parasitology, Vol. 100, No. 5, 2006, pp. 415-431. doi:10.1179/136485906X91477
[2] A. Zumla, P. Malon, J. Henderson and J. Grange, “Impact of HIV on Tuberculosis,” Postgraduate Medical Journal, Vol. 76, No. 895, 2000, pp. 256-268. doi:10.1136/pmj.76.895.259
[3] P. Andersen and T. M. Doherty, “The Success and Failure of BCG-Implications for a Novel Tuberculosis Vaccine,” Nature Reviews, Vol. 3, No. 8, 2005, pp. 656-662.
[4] N. R. Gandhi, A. Moll, A. W. Sturm, et al., “Extensively Drug-Resistant Tuberculosis as a Cause of Death in Patients Coinfected with Tuberculosis and HIV in a Rural Area of South Africa,” Lancet, Vol. 368, No. 9547, 2006, pp. 1575-1580. doi:10.1016/S0140-6736(06)69573-1
[5] L. Brandt, M. Elhay, I. Rosenkrands, E. B. Lindblad and P. Andersen, “ESAT-6 Subunit Vaccination against Mycobacterium tuberculosis,” Infection and Immunity, Vol. 68, No. 2, 2000, pp. 791-795. doi:10.1128/IAI.68.2.791-795.2000
[6] D. Cendron, S. Ingoure, A. Martino, et al., “A Tuberculosis Vaccine Based on Phosphoantigens and Fusion Proteins Induces Distinct Gammadelta and Alphabeta T cell Responses in Primates,” European Journal of Immunology, Vol. 37, No. 2, 2007, pp. 549-565. doi:10.1002/eji.200636343
[7] K. Huygen, “DNA Vaccines against Mycobacterial Diseases,” Future Microbiology, Vol. 1, No. 1, 2006, pp. 63-73. doi:10.2217/17460913.1.1.63
[8] Q. M. Wang, S. H. Sun, Z. L. Hu, F. J. Zhou, M. Yin, C. J. Xiao and J. C. Zhang, “Epitope DNA Vaccines against Tuberculosis: Spacers and Ubiquitin Modulates Cellular Immune Responses Elicited by Epitope DNA Vaccine,” Scandinavian Journal of Immunology, Vol. 60, No. 3, 2004, pp. 219-225. doi:10.1111/j.0300-9475.2004.01442.x
[9] O. Lamrabet and M. Drancourt, “Genetic Engineering of Mycobacterium tuberculosis: A Review,” Tuberculosis, Vol. 92, No. 5, 2012, pp. 365-376. doi:10.1016/j.tube.2012.06.002
[10] Q. M. Wang, S. H. Sun, Z. L. Hu, M. Ying, C. J. Xiao and J. C. Zhang, “Improved Immunogenecity of a Tuberculosis DNA Vaccine Encoding ESAT6 by DNA Priming and Protein Boosting,” Vaccine, Vol. 22, No. 27-28, 2004, pp. 3622-3627. doi:10.1016/j.vaccine.2004.03.029
[11] M. Okada, “Novel Vaccines against M. tuberculosis,” Kekkaku, Vol. 81, No. 12, 2006, pp. 745-751.
[12] C. Palma, E. Iona, F. Giannoni, et al., “The Ag85B Protein of Mycobacterium tuberculosis May Turn a Protective Immune Response Induced by Ag85B-DNA Vaccine into a Potent but Non-Protective Th1 Immune Response in Mice,” Cellular Microbiology, Vol. 9, No. 6, 2007, pp. 1455-1465. doi:10.1111/j.14625822.2007.00884.x
[13] X. Zhang, M. Divangahi, P. Ngai, et al., “Intramuscular Immunization with a Monogenic Plasmid DNA Tuberculosis Vaccine: Enhanced Immunogenicity by Electroporation and Co-Expression of GM-CSF Transgene,” Vaccine, Vol. 25, No. 7, 2007, pp. 1342-1352. doi:10.1016/j.vaccine.2006.09.089
[14] D. Wang, J. Xu, Y. Feng, Y. Liu, S. S. Mchenga, F. Shan, J. Sasaki and C. Lu, “Liposomal Oral DNA Vaccine (Mycobacterium DNA) Elicits Immune Response,” Vaccine, Vol. 28, No. 18, 2010, pp. 134-142. doi:10.1016/j.vaccine.2010.02.058
[15] X. Fan, Q. Gao and R. Fu, “Differential Immunogenicity and Protective Efficacy of DNA Vaccines Expressing Proteins of Mycobacterium tuberculosis in a Mouse Model,” Microbiological Research, Vol. 164, No. 4, 2009, pp. 374-382. doi:10.1016/j.micres.2007.04.006
[16] H. J. Ko, S. Y. Ko, Y. J. Kim, E. G. Lee, S. N. Cho and C. Y. Kang, “Optimization of Codon Usage Enhances the Immunogenicity of a DNA Vaccine Encoding Mycobacterial Antigen Ag85B,” Infection and Immunity, Vol. 73, No. 9, 2006, pp. 5666-5674.
[17] K. M. Lima, S. A. Santos, V. M. Lima, A. A. Coelho-Castelo, J. M. Rodrigues Jr. and C. L. Silva, “Single Dose of a Vaccine Based on DNA Encoding Mycobacterial HSP65 Protein Plus TDM-Loaded PLGA Microspheres Protects Mice against a Virulent Strain of Mycobacterium tuberculosis,” Gene Therapy, Vol. 10, No. 8, 2003, pp. 675-685. doi:10.1038/sj.gt.3301908
[18] K. M. Lima, S. A. dos Santos, R. R. Santos, I. T. Brandao, J. M. Rodrigues Jr. and C. L. Silva, “Efficacy of DNA HSP65 Vaccination for Tuberculosis Varies with Method of DNA Introduction in Vivo,” Vaccine, Vol. 22, No. 1, 2003, pp. 49-56. doi:10.1016/S0264-410X(03)00543-7
[19] A. Varshavsky, “The N-End Rule: Functions, Mysteries, Uses,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 93, No. 22, 1996, pp. 12142-12149. doi:10.1073/pnas.93.22.12142
[20] M. Cotten, A. Baker, M. Saltik, E. Wagner and M. Buschle, “Lipopolysaccharide is a Frequent Contaminant of Plasmid DNA Preparations and Can Be Toxic to Primary Human Cells in the Presence of Adenovirus,” Gene Therapy, Vol. 1, No. 4, 1994, pp. 239-246.
[21] I. Danko, J. D. Fritz, S. Jiao, K. Hogan, J. S. Latendresse and J. A. Wolff, “Pharmacological Enhancement of in vivo Foreign Gene Expression in Muscle,” Gene Therapy, Vol. 1, No. 2, 1994, pp. 114-121.
[22] Q. M. Wang, Z. L. Hu, C. J. Xiao, J. C. Zhang and S. H. Sun, “The Expression and Purification of HSP65 Antigen form Mycobacterium tuberculosis in Ecoli,” China Biotechnology, Academic Journal of Second Military Medical University, Vol. 24, No. 4, 2004, pp. 74-76.
[23] Q. M. Wang, S. H. Sun, Z. L. Hu, D. Wu and Z. C. Wang, “Immune Response and Protection Elicited by DNA Immunisation against Taenia cysticercosis,” Vaccine, Vol. 21, No. 15, 2003, pp. 1672-1680. doi:10.1016/S0264-410X(02)00661-8
[24] S. N. Hanif, R. Al-Attiyah and A. S. Mustafa, “Cellular Immune Response in Mice induced by M. tuberculosis PE35-DNA Vaccine Construct,” Scandinavian Journal of Immunology, Vol. 74, No. 6, 2011, pp. 554-560. doi:10.1111/j.1365-3083.2011.02604.x
[25] J. L. Brandsma, M. Shlyankevich, D. Zelterman and Y. Su, “Therapeutic Vaccination of Rabbits with a Ubiquitin-Fused Papillomavirus E1, E2, E6 and E7 DNA Vaccine,” Vaccine, Vol. 25, No. 33, 2007, pp. 6158-6163. doi:10.1016/j.vaccine.2007.06.012
[26] C. Dobano, W. O. Rogers, K. Gowda and D. L. Doolan, “Targeting Antigen to MHC Class I and Class II Antigen Presentation Pathways for Malaria DNA Vaccines,” Immunology Letters, Vol. 111, No. 2, 2007, pp. 92-102. doi:10.1016/j.imlet.2007.05.007
[27] J. H. Chen, Y. S. Yu, H. H. Liu, et al., “Ubiquitin Conjugation of Hepatitis B Virus Core Antigen DNA Vaccine Leads to Enhanced Cell-Mediated Immune Response in BALB/c Mice,” Hepatitis Monthly, Vol. 11, No. 8, 2011, pp. 620-628. doi:10.5812/kowsar.1735143X.1372
[28] A. Sharma and R. Madhubala, “Ubiquitin Conjugation of Open Reading Frame F DNA Vaccine Leads to Enhanced Cell-Mediated Immune Response and Induces Protection against Both Antimony-Susceptible and -Resistant Strains of Leishmania donovani,” Journal of Immunology, Vol. 183, No. 12, 2009, pp. 7719-7731. doi:10.4049/jimmunol.0900132
[29] L. Ramakrishna, K. K. Anand, M. Mahalingam, K. M. Mohankumar, S. Ramani, N. B. Siddappa, et al., “Codon Optimization and Ubiquitin Conjugation of Human Immunodeficiency Virus-1 Tat Lead to Enhanced Cell-Mediated Immune Responses,” Vaccine, Vol. 22, No. 20, 2004, pp. 2586-2598.
[30] F. Rodriguez, J. Zhang and J. L. Whitton, “DNA Immunization: Ubiquitination of a Viral Protein Enhances Cytotoxic T-Lymphocyte Induction and Antiviral Protection but Abrogates Antibody Induction,” Journal of Virology, Vol. 71, No. 11, 1997, pp. 8497-8503.
[31] O. Vidalin, E. Tanaka, U. Spengler, C. Trepo and G. Inchauspe, “Targeting of Hepatitis C Virus Core Protein for MHC I or MHC II Presentation Does not Enhance Induction of Immune Responses to DNA Vaccination,” DNA and Cell Biology, Vol. 18, No. 8, 1999, pp. 611-621. doi:10.1089/104454999315024

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.