Use of ultrasound in food preservation

Abstract

Ultrasound is versatile and innovative technology due to its wide range of application and increase in knowledge and research studies. It is used in food industry for many purposes including analysis methods and food processings such as freezing, cutting, drying, tempering, homogenization, degassing, antifoaming, filtration and extraction. Ultrasound can be used as a promoter or alternative to food processing. There may be numereous advantages of using ultrasound for food processing such as effective mixing, increased mass transfer, reduced energy, reduced temperature and increased production rate. Due to the elimination of microorganisms and enzymes without destroying nutrients of foods, ultrasound can be used as an alternative method to thermal treatments in the food preservation. Additionally, low power ultrasound is thought to be an attractive nonthermal method due to overcome problems which occur during heat treatments such as physical and chemical changes, nutritional loss and change in organoleptic properties. This review summarizes mechanism, operation and latest potential applications of ultrasound in the food preservation.

Share and Cite:

Ercan, S. and Soysal, Ç. (2013) Use of ultrasound in food preservation. Natural Science, 5, 5-13. doi: 10.4236/ns.2013.58A2002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Ulusoy, H.B. Colak, H. and Hampikyan, H. (2007) The use of ultrasonic waves in food technology. Research Journal of Biological Science, 2, 491-497.
[2] Dolatowski, J.Z., Stadnik, J. and Stasiak, D. (2007) Ap plication of ultrasound in food technology. Acta Scien tiarum Polonorum Technologia Alimentaria, 6, 89-99.
[3] Chemat, F., Huma, Z. and Khan, M.K. (2011) Applica tions of ultrasound in food technology: Processing, pres ervation and extraction. Ultrasonics Sonochemistry, 18, 813-835. doi:10.1016/j.ultsonch.2010.11.023
[4] Earnshaw, R.G., Appleyard, J. and Hurst, R.M. (1995) Understanding physical inactivation processes: Combined preservation opportunities using heat, ultrasound and pressure. International Journal of Food Microbiology, 28, 197-219. doi:10.1016/0168-1605(95)00057-7
[5] Mulet, A., Carcel, J., Benedito, C., Rossello, C. and Simal, S. (2003) Ultrasonic mass transfer enhancement in food processing. In: J. Welti-Chanes, F. Vélez-Ruiz and Bar bosa-Cánovas, G.V., Eds., Transport Phenomena of Food Processing, Chapter 18, Boca Raton.
[6] Leadley, C.E. and Williams, A. (2006) Pulsed electric field processing, power ultrasound and other emerging technologies. In: Brennan, J.G., Ed., Food Processing Handbook, Wiley-VCH, Weinheim, 214-218. doi:10.1002/3527607579.ch7
[7] Mason, T.J. (1998) Power ultrasound in food processing—The way forward. In: Povey, M.J.W. and Mason, T.J. Eds., Ultrasound in Food Processing, Blackie Academic and Professional, London, 105-126.
[8] Jayasooriya, S.D., Bhandari, B.R., Torley, P. and Darcy, B.R. (2004) Effect of high power ultrasound waves on properties of meat: A review. International Journal of Food Properties, 2, 301-319. doi:10.1081/JFP-120030039
[9] Knorr, D., Zenker, M., Heinz, V. and Lee, D.U. (2004) Applications and potential of ultrasonics in food process ing. Trends in Food Science and Technology, 15, 261-266. doi:10.1016/j.tifs.2003.12.001
[10] McClements, D.J. (1995) Advances in the application of ultrasound in food analysis and processing. Trends in Food Science and Technology, 6, 293-299. doi:10.1016/S0924-2244(00)89139-6
[11] Zheng, L. and Sun, D.W. (2006) Innovative applications of power ultrasound during food freezing processes—A review. Trends in Food Science and Technology, 17, 16-23. doi:10.1016/j.tifs.2005.08.010
[12] Mason, T.J., Paniwnyk, L. and Lorimer, J.P. (1996) The uses of ultrasound in food technology. Ultrasonics Sono chemistry, 3, 253-260. doi:10.1016/S1350-4177(96)00034-X
[13] Villamiel, M., Hamersveld, V. and De Jong, P. (1999) Review: Effect of ultrasound processing on the quality of dairy products. Milchwissenschaft, 54, 69-73.
[14] Manas, P., Munoz, B., Sanz, D. and Condon, S. (2006) Inactivation of lysozyme by ultrasonic waves under pres sure at different temperatures. Enzyme and Microbial Technology, 39, 1177-1182. doi:10.1016/j.enzmictec.2005.11.053
[15] Raso, J. and Barbosa-Canovas, G.V. (2003) Nonthermal preservation of foods using combined processing tech niques. Critical Reviews in Food Science and Nutrition, 43, 265-285. doi:10.1080/
10408690390826527
[16] Piyasena, P., Mohareb, E. and Mckellar, R.C. (2003) In activation of microbes using ultrasound: A review. Inter national Journal of Food Microbiology, 87, 207-216. doi:10.1016/S0168-1605(03)00075-8
[17] Sahin Ercan, S. and Soysal C. (2011) Effect of ultrasound and temperature on tomato peroxidase. Ultrasonics Sono chemistry, 18, 689-695. doi:10.1016/j.ultsonch.2010.09.014
[18] Earnshaw, R.G. (1998) Ultrasound: A new opportunity for food preservation, In: Povey, M.J.W and Mason, T.J., Eds., Ultrasound in Food Processing, Blackie Academic and Professional, London, 183-192.
[19] Sala, F.J., Burgos, J., Condon, S., Lopez, P. and Raso, J. (1995) Effect of heat and ultrasound on microorganisms and enzymes. In: Gould, G.W., Ed., New Methods of Food Preservation, Blackie Academic and Professional, Lon don, 176-204.
[20] Drakopoulou, S., Terzakis, S., Fountoulakis, M.S., Mant zavinos, D. and Manios, T. (2009) Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater. Ultrasonics Sonochemistry, 16, 629-634. doi:10.1016/j.ultsonch.2008.11.011
[21] Wordon, B.A., Mortimer, B. and McMast, L.D. (2011) Comparative real-time analysis of Saccharomyces cere visiae cell viability, injury and death induced by ultra sound (20 kHz) and heat for the application of hurdle technology. Food Research International, 47, 134-139. doi:10.1016/j.foodres.2011.04.038
[22] D’Amico, D.J., Silk, T.M., Wu, J.R. and Guo, M.R. (2006) Inactivation of microorganisms in milk and apple cider treated with ultrasound. Journal of Food Protection, 69, 556-563.
[23] Kapturowska, A., Stolarzewicz, I. and Chmielewska, I. (2011) Ultrasounds—A tool to inactivate yeast and to ex tract intracellular protein. Zywnosc-Nauka Technologia Jakosc, 18, 160-171.
[24] Dehghani, M.H. (2005) Effectiveness of ultrasound on the destruction of E. coli. American Journal of Environ mental Sciences, 1, 187-189. doi:10.3844/ajessp.2005.187.189
[25] USDA (2000) Kinetics of microbial inactivation for alter native food processing technologies: Ultrasound. US Food and Drug Administration Report. http://www.fda.gov/Food/FoodScienceResearch/SafePractices
forFoodProcesses/ucm103342.htm
[26] Suslick, K.S. (1990) Sonochemistry. American Associa tion for the Advancement of Science, 247, 1439-1445.
[27] Suslick, K.S. (1988) Homogeneous sonochemistry. In: Ultrasound. Its Chemical, Physical, and Biological Ef fects. VCH Publishers, New York, 123-163.
[28] Juraga, E., Salamon, B.S. and Herceg, Z. (2011) Applica tion of high intensity ultrasound treatment on Enterobac teriae count in milk. Mljekarstvo, 61, 125-134.
[29] Raso, J., Palop, A. and Condon, S. (1998) Inactivation of Bacillus subtilis spores by combining ultrasound waves under pressure and mild heat treatment. Journal of Ap plied Microbiology, 85, 849-854. doi:10.1046/j.1365-2672.1998.00593.x
[30] Pagan, R., Manas, P., Alvarez, I. and Condon, S. (1999) Resistance of Listeria monocytogenes to ultrasonic waves under presure at sublethal (manosonication) and lethal (manother-mosonication) temperatures. Food Microbiol ogy, 16, 139-148. doi:10.1006/fmic.1998.0231
[31] Feng, H., Barbosa-Canovas, G.V. and Weiss, J. (2011) Ultrasound technologies for food and bioprocessing, Springer, New York. doi:10.1007/978-1-4419-7472-3
[32] Guiseppi-Elie, A., Choi, S-H. and Geckeler, K.E. (2009) Ultrasonic processing of enzymes: Effect on enzymatic activity of glucose oxidase. Journal of Molecular Cataly sis, 58, 118-123. doi:10.1016/j.molcatb.2008.12.005
[33] De Gennaro, L., Cavella, S., Romano, R. and Masi, P. (1999) The use of ultrasound in food technology I: Inac tivation of peroxidase by thermosonication. Journal of Food Engineering, 39, 401-407. doi:10.1016/S0260-8774(99)00028-X
[34] Raviyan, P., Zhang, Z. and Feng, H. (2005) Ultrasonica tion for tomato pectinmethylesterase inactivation: Effect of cavitation intensity and temperature on inactivation. Journal of Food Engineering, 70, 189-196. doi:10.1016/j.jfoodeng.2004.09.028
[35] Vercet, A., Burgos, J., Crelier, S. and Lopez-Buesa, P. (2001) Inactivation of protease and lipase by ultrasound. Innovation Food Science and Technologies, 2, 139-150. doi:10.1016/S1466-8564(00)00037-0
[36] Cruz, R.M.S., Vieira, M.C. and Silva, C.L.M. (2006) Ef fect of heat and thermosonication treatments on peroxi dase inactivation kinetics in watercress (Nasturtium offi cinale). Journal of Food Engineering, 7, 8-15. doi:10.1016/j.jfoodeng.2004.11.007
[37] Suslick, K.S. (1994) The chemistry of ultrasound. From The Yearbook of Science and the Future. Encyclopaedia, Britannica, Chicago, 138-155.
[38] Barteri, M., Diociaiuti, M., Pala, A. and Rotella, S. (2004). Low frequency ultrasound induces aggregation of porcine fumarase by free radicals production. Biophysical Chem istry, 111, 35-42. doi:10.1016/j.bpc.2004.04.002
[39] Tian, Z.M., Wan, M.X., Wang, S.P. and Kang, J.Q. (2004) Effects of ultrasound and additives on the function and structure of trypsin. Ultrasonics Sonochemistry, 11, 399-404.
[40] Potapovich, M.V., Eremin, A.N. and Metelitza, D.I. (2003) Kinetics of catalase inactivation induced by ultrasonic cavitation. Applied Biochemistry and Microbiology, 39, 140-146. doi:10.1023/A:10225
77611056
[41] Ozbek, B. and ülgen, K.O. (2000) The stability of en zymes after sonication. Process Biochemistry, 35, 1037 1043. doi:10.1016/S0032-9592(00)00141-2
[42] Lopez, P. and Burgos, J. (1995) Peroxidase stability and reactivation after heat treatment and monothermosoni cation. Journal of Food Science, 60, 451-455,482. doi:10.1111/j.1365-2621.1995.tb09801.x
[43] Lopez, P. and Burgos, J. (1995) Lipoxygenase inactiva tion by manothermosonication: Effects of sonication phy sical parameters, pH, KCl, sugars, glycerol, and enzyme concentration. Journal of Agricultural and Food Chem istry, 43, 620-625. doi:10.1021/jf00051a012
[44] Lopez, P., Sala, F.J., de la Fuente, J.L., Condon, S., Raso, J. and Burgos, J. (1994) Inactivation of peroxidase, li poxygenase and polyphenol oxidase by manothermoso nication. Journal of Agricultural and Food Chemistry, 42, 252-256. doi:10.1021/jf00038a005
[45] Vercet, A., Burgos, J. and Lopez-Buesa, P. (2002) Mana thermosonication of heat resistant lipase and protease from Pseudomonas fluorescence: Effect of pH and soni cation parameters. Journal of Dairy Research, 69, 243-254. doi:10.1017/S0022029902005460
[46] Vercet, A., Sanchez, C., Burgos, J., Montanes, L. and Lopez-Buesa, P. (2002) The effects of manothermoso nication on tomato pectic enzymes and tomato paste rheo logical properties. Journal of Food Engineering, 53, 273 278. doi:10.1016/S0260-8774(01)00165-0
[47] Villamiel, M. and de Jong, P. (2000) Influence of high intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. Jour nal of Agricultural and Food Chemistry, 48, 472-478. doi:10.1021/jf990181s
[48] Wu, J., Gamage, T.V., Vilkhu, K.S., Simons, L.K. and Mawson, R. (2008) Effect of thermosonication on quality improvement of tomato juice. Innovative Food Science and Emerging Technologies, 9, 186-195. doi:10.1016/j.ifset.2007.07.007
[49] Cruz, R.M.S., Vieria, C.M. and Silva, C.L.M. (2008) Effect of heat and thermosonication treatments on water cress (Nasturtium officinale) vitamin C degredation kine tics. Innovative Food Science and Emerging Technologies, 9, 483-488. doi:10.1016/j.ifset.2007.10.005
[50] Yoon-Ku, J., Park, S.O. and Bong-Soo, N. (2000) Inacti vation of peroxidase by hurdle technology. Food Science and Biotechnology, 9, 124-129.
[51] Thakur, B.R. and Nelson, P.E. (1997) Inactivation of li poxygenase in whole soy floor suspension by ultrasonic cavitation. Die Nahrung, 41, 299-301. doi:10.1002/food.19970410510
[52] Sun, D.W. (2005) Emerging technologies for food proc essing. Elsevier Academic Press, USA, 323-345.
[53] Vercet, A., Lopez, P. and Burgos, J. (1997) Inactivation of heat resistant lipase and protease from Pseudomonas fluorescens by manothermosonication. Dairy Science, 80, 29-36. doi:10.3168/jds.S0022-0302(97)75909-5
[54] Zeuthen, P. and Sorensen, B.L. (2003) Food Preservation Techniques. CRC Press, Washington, 303-337. doi:10.1533/9781855737143
[55] Vercet, A., Lopez, P. and Burgos, J. (1999) Inactivation of heat resistant pectinmethylesterase from orange by man othermosonication. Journal of Agricultural and Food Chemistry, 47, 432-437. doi:10.1021/jf980566v
[56] Lopez, P., Vercet, A. and Burgos, J. (1998) Inactivation of tomato pectic enzymes by manothermosonication. Zeits chrift für Lebensmittel-Untersuchung und Forschung A, 207, 249-252.
[57] Nicoleti, J.F., Silveira-Junior, V., Telis-Romero, J. and Telis, V.R.N. (2004) Ascorbic acid degradation during convective drying of persimmons with fixed temperature inside the fruit. Proceedings of the 14th International Drying Symposium, Sao Paulo, 1836-1843.
[58] Matei, N., Soceanu, A., Dobrinas, S. and Magearu, V. (2009) Kinetic study of ascorbic acid degradation from grapes. Ovidius University Annals of Chemistry, 20, 132-136.
[59] Tiwari, B.K., Donnell, C.P.O., Muthukumarappan, K. and Cullen, P.J. (2009) Ascorbic acid degredation kinetics of sonicated orange juice during storage and comparison with thermally pasteurized juice. LWT Food Science and Technology, 42, 700-704. doi:10.1016/j.lwt.2008.10.009
[60] Cheng, L.H., Soh, C.Y., Liew, S.C. and Teh, F.F. (2007) Effects of sonication and carbonation on guava juice quality. Food Chemistry, 104, 1396-1401. doi:10.1016/j.foodchem.2007.02.001
[61] Tiwari, B.K., O’Donnell, C.P. and Cullen, P.J. (2009) Ef fect of sonication on retention of anthocyanins in black berry juice. Journal of Food Engineering, 93, 166-171. doi:10.1016/j.jfoodeng.2009.01.027
[62] Tiwari, B.K., O’Donnell, C.P., Patras, A. and Cullen, P.J. (2008) Anthocyanin and ascorbic acid degradation in so nicated strawberry juice. Journal of Agriculture and Food Chemistry, 56, 10071-10077. doi:10.1021/jf801824v
[63] Adequnte, A., Tiwari, B.K., Scannell, A., Cullen, P.J. and O’Donnell, C. (2010) Modelling of yeast inactivation in sonicated tomato juice. International Journal of Food Microbiology, 137, 116-120. doi:10.1016/j.ijfoodmicro.2009.10.006
[64] Lee, H., Zhou, B., Liang, W., Feng, H. and Martin, S.E. (2009) Inactivation of Escherichia coli cells with sonica tion, manosonication, thermosonication, and manother mosonication: Microbial responses and kinetics modeling. Journal of Food Engineering, 93, 354-364. doi:10.1016/j.jfoodeng.2009.01.037
[65] Arroyo, C., Cebrián, G., Pagán, R. and Condón, S. (2012) Synergistic combination of heat and ultrasonic waves under pressure for Cronobacter sakazakii inactivation in apple juice. Food Control, 25, 342-348. doi:10.1016/j.foodcont.2011.10.056
[66] Lopez-Malo, A., Palou, E., Jimenez-Fernandez, M., Al zamora, S.M. and Guerrero, S. (2005) Multifactorial fun gal inactivation combining thermosonication and antim icrobials. Journal of Food Engineering, 67, 87-93. doi:10.1016/j.jfoodeng.2004.05.072
[67] Bermudez-Aguirre, D. and Barbosa-Canovas, G.V. (2008) Study of butter fat content in milk on the inactivation of Listeria innocua ATCC 51742 by thermo sonication. In novative Food Science and Emerging Technologies, 9, 176-185.
[68] Brennan, J.G. (2006) Food processing handbook. Wiley VCH, Germany, 215-220.
[69] Karaseva, E. and Metelitza, D.I. (2006) Stabilization of glucose-6-phosphate dehydrogenase by its substrate and cofactor in an ultrasonic field. Russian Journal of Bioor ganic Chemistry, 32, 436-443. doi:10.1134/S1068162006050062
[70] Potapovich, M.V., Eryomin, A.N. and Metelitza, D.I. (2005) Ultrasonic and thermal inactivation of catalases from bovine liver, the methylotrophic yeast Pichia pas toris, and the fungus Penicillium piceum. Applied Bio chemistry and Microbiology, 41, 529-537. doi:10.1007/s10438-005-0096-3

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.