Share This Article:

Influence of Rotating Speed Ratio on the Annular Turbulent Flow between Two Rotating Cylinders

Abstract Full-Text HTML Download Download as PDF (Size:1840KB) PP. 1000-1012
DOI: 10.4236/jmp.2013.47135    2,922 Downloads   4,193 Views  
Author(s)    Leave a comment

ABSTRACT

Rotating flows represent a very interesting area for researchers and industry for their extensive use in industrial and domestic machinery and especially for their great energy potential, annular flows are an example that draws the attention of researchers in recent years. The best design and optimization of these devices require knowledge of thermal, mechanical and hydrodynamic characteristics of flows circulating in these devices. An example of hydrodynamic parameters is the speed of rotation of the moving walls. This work is to study numerically the influence of the rotating speed ratio Γ of the two moving cylinders on the mean and especially on the turbulent quantities of the turbulent flow in the annular space. The numerical simulation is based on one-point statistical modeling using a low Reynolds number second-order full stress transport closure (RSM model), simulation code is not a black box but a completely transparent code where we can intervene at any step of the calculation. We have varied Γ from -1.0 to 1.0 while maintaining always the external cylinder with same speed Ω. The results show that the turbulence structure, profiles of mean velocities and the nature of the boundary layers of the mobile walls depend enormously on the ratio of speeds. The level of turbulence measured by the kinetic energy of turbulence and the Reynolds stresses shows well that the ratio Γ is an interesting parameter to exploit turbulence in this kind of annular flows.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Raddaoui, "Influence of Rotating Speed Ratio on the Annular Turbulent Flow between Two Rotating Cylinders," Journal of Modern Physics, Vol. 4 No. 7, 2013, pp. 1000-1012. doi: 10.4236/jmp.2013.47135.

References

[1] J. Michael Owen, K. Zhou, O. Pountney, M. Wilson and G. Lock, Journal of Turbomachinery, Vol. 134, 2012, Article ID: 031012. doi:10.1115/1.4003070
[2] A. Gupta, D. Lilley and N. Syreed, “Swirl Flows,” Abacus Press, London, Vol. 170, 1984, pp. 525-799.
[3] S. Wang, S. Taylor and K. Akil, Journal of Fluids Engineering, Vol. 132, 2010, Article ID: 031201. doi:10.1115/1.4001106
[4] A. P. Morse, Journal of Turbomachinery, Vol. 110, 1988, pp. 202-212. doi:10.1115/1.3262181
[5] A. P. Morse, Journal of Turbomachinery, Vol. 113, 1992, pp. 98-105.
[6] K. Choukairy, R. Bennacer, H. Beji, S. Jaballah and M. El Ganaoui, An International Journal of Computation and Methodology, Vol. 50, 1992, pp. 773-785.
[7] N. El Gharbi, R. Absi and A. Benzaoui, International Journal of Thermal Sciences, Vol. 70, 2011.
[8] T. P. Dhakal and D. K. Walters, Journal of Fluids Engineering, Vol. 133, 2011, Article ID: 111201. doi:10.1115/1.4004940
[9] T. Hayat, M. Awais, S. Asghar and A. A. Hendi, Journal of Fluids Engineering, Vol. 133, 2011, Article ID: 061201. doi:10.1115/1.4004300
[10] S. Kotake and N. Hattori, International Journal of Heat and Mass Transfer, Vol. 28, 1985, pp. 2113-2120. doi:10.1016/0017-9310(85)90105-X
[11] S. R. De Farias Neto, P. Legentilhomme and J. Legrand, International Journal of Heat and Mass Transfer, Vol. 40, 1997, pp. 3927-3935.
[12] P. Cadiou, G. Desrayaud and G. Lauriat, Comptes Rendus de l’Académie des Sciences, Vol. 327, 1999, pp. 119-124.
[13] M. I. Farinas, A. Garon, K. St-Louis and M. Lacroix, International Journal of Heat and Mass Transfer, Vol. 42, 1999, pp. 3905-3917.
[14] S. H. Lin, International Journal of Heat and Mass Transfer, Vol. 35, 1992, pp. 3069-3075. doi:10.1016/0017-9310(92)90326-N
[15] S. Poncet, S. Haddadi and S. Viazzo, International Journal of Heat and Fluid Flow, Vol. 32, 2011, pp. 128-144. doi:10.1016/j.ijheatfluidflow.2010.08.003
[16] M. Raddaoui, Journal of Modern Physics, Vol. 2, 2011, pp. 392-397. doi:10.4236/jmp.2011.25048
[17] S. Poncet, R. Schiestel and R. Monchaux, International Journal of Heat and Fluid Flow, Vol. 29, 2008, pp. 62-74. doi:10.1016/j.ijheatfluidflow.2007.07.005
[18] H. Iacovides and P. Toumpanakis, “Turbulence Modeling of Flow in Axisymmetric Rotor-Stator Systems,” Presses de l’Ecole Nationale des Ponts et Chaussées, 5th International Symposium on Refined Flow Modeling and Turbulence Measurements, Paris, 1993, pp. 7-10.
[19] T. Ivanic, E. Foucault and J. Pecheux, Experiments in Fluids, Vol. 35, 2003, pp. 317-324. doi:10.1007/s00348-003-0646-5
[20] T. Loiseleux, J. M. Chomaz and P. Huerre, Physics of Fluids, Vol. 10, 1998, pp. 1120-1134. doi:10.1063/1.869637
[21] J. Adjovi and E. Foucault, “Stabilité des Jets Annulaires Tournants,” Congrès Francophone de Techniques Laser, 2006.
[22] V. Hasmatuchi, M. Farhat, S. Roth, F. Botero and F. Avellan, Journal of Fluids Engineering, Vol. 133, 2011, Article ID: 051104.
[23] R. A. Seban and A. Hunsbedt, International Journal of Heat and Mass Transfer, Vol. 16, 1973, pp. 303-310. doi:10.1016/0017-9310(73)90059-8
[24] K. S. Ball, B. Farouk and V. C. Dixit, International Journal of Heat and Mass Transfer, Vol. 32, 1989, pp. 1517-1527.
[25] H. Pfitzer and H. Beer, International Journal of Heat and Mass Transfer, Vol. 35, 1992, pp. 623-633. doi:10.1016/0017-9310(92)90121-8
[26] M. R. F. Heikal, P. J. Walklate and A. P. Hatton, International Journal of Heat and Mass Transfer, Vol. 20, 1977, pp. 763-771. doi:10.1016/0017-9310(77)90174-0
[27] M. Ould-Rouis, A. Salem, J. Legrand and C. Nouar, International Journal of Heat and Mass Transfer, Vol. 38, 1995, pp. 953-967. doi:10.1016/0017-9310(94)00233-L
[28] M. Bouafia, A. Ziouchi, Y. Bertin and J.-B. Saulnier, International Journal of Thermal Sciences, Vol. 38, 1999, pp. 547-559. doi:10.1016/S0035-3159(99)80035-X
[29] L. Elena and R. Schiestel, AIAA Journal, Vol. 33, 1995, pp. 812-821. doi:10.2514/3.12800
[30] B. E. Launder and D. P. Tselepidakis, International Journal of Heat and Fluid Flow, Vol. 15, 1994, pp. 2-10.
[31] K. Hanjalic and B. E. Launder, Journal of Fluid Mechanics, Vol. 74, 1976, pp. 593-610. doi:10.1017/S0022112076001961
[32] R. Schiestel, L. Elena and T. Rezoug, Numerical Heat Transfer, Vol. 24, 1993, pp. 45-65.
[33] M. Itoh, Y. Yamada, S. Imao and M. Gonda, “Experiments on Turbulent Flow Due to an Enclosed Rotating Disc,” Proceedings of the International Symposium on Engineering Turbulence Modeling and Experiments, W. Rodi and E. N. Galic, Eds., Elsevier, New York, 1990, pp. 659-668.
[34] L. Elena and R. Schiestel, International Journal of Heat and Fluid Flow, Vol. 17, 1996, pp. 283-289. doi:10.1016/0142-727X(96)00032-X
[35] H. Iacovides and I. P. Theofanopoulos, International Journal of Heat and Fluid Flow, Vol. 12, 1991, pp. 2-11. doi:10.1016/0142-727X(91)90002-D
[36] R. Schiestel, “Les Ecoulements Turbulents,” 2nd Edition, Hermès, Paris, 1998.
[37] L. Elena, “Modélisation de la Turbulence Inhomogène en Présence de Rotation,” Ph.D. Thesis, Université Aix-Marseille I-II, 1994.
[38] S. Poncet, M. P. Chauve and R. Schiestel, Physics of Fluids, Vol. 17, 2005, Article ID: 075110. doi:10.1063/1.1964791
[39] C. Cambon and L. Jacquin, Journal of Fluid Mechanics, Vol. 202, 1989, pp. 295-317. doi:10.1017/S0022112089001199
[40] C. Cambon, L. Jacquin and J. L. Lubrano, Physics of Fluids, Vol. A4, 1992, pp. 812-824.
[41] C. Cambon, R. Rubinstein and F. S. Godeferd, New Journal of Physics, Vol. 6, 2004, pp. 73-102. doi:10.1088/1367-2630/6/1/073
[42] C. Cambon, C. Teissedre and D. Jeandel, Journal de Mécanique Théorique et Appliquée, Vol. 4, 1985, pp. 629-657.
[43] J. P. Bertoglio, G. Charnay and J. Mathieu, Journal de Mécanique Théorique et Appliquée, Vol. 4, 1980, pp. 421-443.
[44] W. C. Reynolds, “Towards a Structure-Based Turbulence Model,” In: T. B. Gatski, S. Sarkar and C. G. Speziale, Eds., Studies in Turbulence, Springer-Verlag, Berlin, 1991.
[45] R. Schiestel and L. Elena, Aerospace Science and Technology, Vol. 7, 1997, pp. 441-451. doi:10.1016/S1270-9638(97)90006-7
[46] P. G. Huang and M. A. Leschziner, “Stabilization of Recirculation Flow Computations Performed with Second Moments Closures and Third Order Discretization,” Cornell University, Ithaca, 1985.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.