Are type IV pili involved in Vibrio anguillarum virulence towards sea bass (Dicentrarchus labrax L.) larvae?
Ingeborg Frans, Pieter Busschaert, Kristof Dierckens, Chris W. Michiels, Kris A. Willems, Bart Lievens, Peter Bossier, Hans Rediers
Centre for Food and Microbial Technology, M2S, KU Leuven, Leuven, Belgium.
Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium;Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium.
Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium;Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium Centre for Food and Microbial Technology, M2S, KU Leuven, Leuven, Belgium Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production, Ghent University, Ghent, Belgium.
Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production, Ghent University, Ghent, Belgium.
DOI: 10.4236/as.2013.46A005   PDF    HTML     5,225 Downloads   7,696 Views   Citations

Abstract

Vibrio anguillarum, an important bacterial fish pathogen, expresses a variety of virulence factors contributing to its ability to cause vibriosis in fish. Many virulence factors of this pathogen remain however unknown. For example, a type IV pilus system was previously reported to be potentially involved in the virulence of this bacterium but no experimental evidence was reported yet. In this study, complete genome sequencing of V. anguillarum strain VIB15, shown to be highly virulent towards sea bass (Dicen- trarchus labrax L.) larvae, revealed the presence of a PilA pilin. A V. anguillarum VIB15 pilA mutant was constructed and the pathogenicity of this mutant was assessed in a gnotobiotic sea bass system developed for virulence screening. Our results suggest that the V. anguillarum pilA gene is not crucial for virulence towards sea bass larvae. Possibly, another type IV pilus system identified in V. anguillarum, showing homology to the mannose-sensitive hemagglutinin pilin of Vibrio cholerae, may complement the pilA mutation. Alternatively, the type IV pilus system has a role in infection of juvenile or adult fish, rather than in the larval phase. As such, further research is required to unravel the potential role of type IV pili in V. anguillarum virulence.

Share and Cite:

Frans, I. , Busschaert, P. , Dierckens, K. , Michiels, C. , Willems, K. , Lievens, B. , Bossier, P. and Rediers, H. (2013) Are type IV pili involved in Vibrio anguillarum virulence towards sea bass (Dicentrarchus labrax L.) larvae?. Agricultural Sciences, 4, 30-38. doi: 10.4236/as.2013.46A005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Aguirre-Guzman, G., Ruiz, H.M. and Ascencio, F. (2004) A review of extracellular virulence product of Vibrio species important in diseases of cultivated shrimp. Aquaculture Research, 35, 1395-1404. doi:10.1111/j.1365-2109.2004.01165.x
[2] Paillard, C., Leroux, F. and Borrego, J.J. (2004) Bacterial disease in marine bivalves: Review of recent studies: Trends and evolution. Aquatic Living Resources, 17, 477498. doi:10.1051/alr:2004054
[3] Toranzo, A.E., Magarinos, B. and Romalde, J.L. (2005) A review of the main bacterial fish diseases in mariculture systems. Aquaculture, 246, 37-61. doi:10.1016/j.aquaculture.2005.01.002
[4] Frans, I., Michiels, C.W., Bossier, P., Willems, K.A., Lievens, B. and Rediers, H. (2011) Vibrio anguillarum as a fish pathogen: Virulence factors, diagnosis and prevention. Journal of Fish Diseases, 34, 643-661. doi:10.1111/j.1365-2761.2011.01279.x
[5] Naka, H. and Crosa, J.H. (2011) Genetic determinants of virulence in the marine fish pathogen Vibrio anguillarum. Fish Pathology, 46, 1-10. doi:10.3147/jsfp.46.1
[6] Rodkhum, C., Hirono, I., Stork, M., Lorenzo, M.D., Crosa, J.H. and Aoki, T. (2006) Putative virulence-related genes in Vibrio anguillarum identified by random genome sequencing. Journal of Fish Diseases, 29, 157-166. doi:10.1111/j.1365-2761.2006.00692.x
[7] Pelicic, V. (2008) Type IV pili: E pluribus unum? Molecular Microbiology, 68, 827-837. doi:10.1111/j.1365-2958.2008.06197.x
[8] Craig, L., Pique, M.E. and Tainer, J.A. (2004) Type IV pilus structure and bacterial pathogenicity. Nature Reviews Microbiology, 2, 363-378. doi:10.1038/nrmicro885
[9] Giltner, C.L., Nguyen, Y. and Burrows, L.L. (2012) Type IV pilin proteins: Versatile molecular modules. Microbiology and Molecular Biology Reviews, 76, 740-772. doi:10.1128/MMBR.00035-12
[10] Kang, Y., Liu, H., Genin, S., Schell, M.A. and Denny, T.P. (2002) Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Molecular Microbiology, 46, 427-437. doi:10.1046/j.1365-2958.2002.03187.x
[11] Masada, C.L., LaPatra, S.E., Morton, A.W. and Strom, M.S. (2002) An Aeromonas salmonicida type IV pilin is required for virulence in rainbow trout Oncorhynchus mykiss. Diseases of Aquatic Organisms, 51, 13-25. doi:10.3354/dao051013
[12] Essex-Lopresti, A.E., Boddey, J.A., Thomas, R., Smith, M.P., Hartley, M.G., Atkins, T., et al. (2005) A type IV pilin, PilA, contributes to adherence of Burkholderia pseudomallei and virulence in vivo. Infection and Immunity, 73, 1260-1264. doi:10.1128/IAI.73.2.1260-1264.2005
[13] Paranjpye, R.N., Johnson, A.B., Baxter, A.E. and Strom, M.S. (2007) Role of type IV pilins in persistence of Vibrio vulnificus in Crassostrea virginica oysters. Environmental Microbiology, 73, 5041-5044.
[14] Boyd, J.M., Dacanay, A., Knickle, L.C., Touhami, A., Brown, L.L., Jericho, M.H., Johnson, S.C. and Reith, M. (2008) Contribution of type IV pili to the virulence of Aeromonas salmonicida subsp. salmonicida in Atlantic salmon (Salmo salar L.). Infection and Immunity, 76, 1445-1455. doi:10.1128/IAI.01019-07
[15] Austin, B., Alsina, M., Austin, D.A., Blanch, A.R., Grimont, F., Grimont, P.A.D., et al. (1995) Identification and typing of Vibrio anguillarum: A comparison of different methods. Systematic and Applied Microbiology, 18, 285302. doi:10.1016/S0723-2020(11)80400-5
[16] Lievens, B., Brouwer, M., Vanachter, A.C.R.C., Levesque, C.A., Cammue, B.P.A. and Thomma, B.P.H.J. (2003) Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogens. FEMS Microbiology Letters, 223, 113-122. doi:10.1016/S0378-1097(03)00352-5
[17] Sambrook, J. and Russell, D.W. (2001) Molecular cloning: A laboratory manual. 3rd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
[18] Patel, R.K. and Jain, M. (2012) NGS QC toolkit: A toolkit for quality control of next generation sequencing data. PloS One, 7, e30619. doi:10.1371/journal.pone.0030619
[19] Boetzer, M., Henkel, C.V., Jansen, H.J., Butler, D. and Pirovano, W. (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics, 27, 578-579. doi:10.1093/bioinformatics/btq683
[20] Boetzer, M. and Pirovano, W. (2012) Toward almost closed genomes with GapFiller. Genome Biology, 13, R56. doi:10.1186/gb-2012-13-6-r56
[21] Aziz, R.K., Bartels, D., Best, A.A., Dejongh, M., Disz, T., Edwards, et al. (2008) The RAST server: Rapid annotations using subsystems technology. BMC Genomics, 9, 75. doi:10.1186/1471-2164-9-75
[22] Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402. doi:10.1093/nar/25.17.3389
[23] Milton, D.L., O’Toole, R., Horstedt, P. and Wolf-Watz, H. (1996) Flagellin A is essential for the virulence of Vibrio anguillarum. Journal of Bacteriology, 178, 1310-1319.
[24] Dierckens, K., Rekecki, A., Laureau, S., Sorgeloos, P., Boon, N., Van den Broeck, W. and Bossier, P. (2009) Development of a Listonella (Vibrio) anguillarum challenge test for gnotobiotic sea bass (Dicentrarchus labrax) larvae. Environmental Microbiology, 11, 526-533. doi:10.1111/j.1462-2920.2008.01794.x
[25] Frans, I., Dierckens, K., Crauwels, S., Van Assche, A., Leisner, J., Larsen, M.H., Michiels, C.W., Bossier, P., Willems, K.A., Lievens, B. and Rediers, H. (2013) Does virulence assessment of Vibrio anguillarum using sea bass (Dicentrarchus labrax) larvae correspond with genotypic and phenotypic characterization? Plos One, submitted.
[26] Fullner, K.J. and Mekalanos, J.J. (1999) Genetic characterization of a new type IV-A pilus gene cluster found in both classical and El Tor biotypes of Vibrio cholerae. Infection and Immunity, 67, 1393-1404.
[27] Browne-Silva, J. and Nishiguchi, M.K. (2008) Gene sequences of the pil operon reveal relationships between symbiotic strains of Vibrio fischeri. International Journal of Systematic and Evolutionary Microbiology, 58, 12921299. doi:10.1099/ijs.0.65370-0
[28] Paranjpye, R.N. and Strom, M.S. (2005) A Vibrio vulnificus type IV pilin contributes to biofilm formation, adherence to epithelial cells, and virulence. Infection and Immunity, 73, 1411-1422. doi:10.1128/IAI.73.3.1411-1422.2005
[29] Naka, H., Dias, G.M., Thompson, C.C., Dubay, C., Thompson, F.L. and Crosa, J.H. (2011) Complete genome sequence of the marine fish pathogen Vibrio anguillarum harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of V. anguillarum and V. ordalii. Infection and Immunity, 79, 2889-2900. doi:10.1128/IAI.05138-11
[30] Paranjpye, R.N., Lara, J.C., Pepe, J.C., Pepe, C.M. and Strom, M.S. (1998) The type IV leader peptidase/N-methyltransferase of Vibrio vulnificus controls factors required for adherence to HEp-2 cells and virulence in iron-overloaded mice. Infection and Immunity, 66, 5659-5668.
[31] Giltner, C.L., Habash, M. and Burrows, L.L. (2010) Pseudomonas aeruginosa minor pilins are incorporated into Type IV pili. Journal of Molecular Biology, 398, 444461. doi:10.1016/j.jmb.2010.03.028
[32] Koo, J., Tammam, S., Ku, S.Y., Sampaleanu, L.M., Burrows, L.L. and Howell, P.L. (2008) PilF is an outer membrane lipoprotein required for multimerization and localization of the Pseudomonas aeruginosa Type IV pilus secretin. Journal of Bacteriology, 190, 6961-6969. doi:10.1128/JB.00996-08
[33] Burrows, L.L. (2012) Pseudomonas aeruginosa twitching motility: Type IV pili in action. Annual Review of Microbiology, 66, 493-520. doi:10.1146/annurev-micro-092611-150055
[34] Tammam, S., Sampaleanu, L.M., Koo, J., Manoharan, K., Daubaras, M., Burrows, L.L. and Howell, P.L. (2013) PilMNOPQ from the Pseudomonas aeruginosa Type IV Pilus System form a transenvelope protein interaction network that interacts with PilA. Journal of Bacteriology, 195.
[35] Mattick, J.S. (2002) Type IV pili and twitching motility. Annual Review of Microbiology, 56, 289-314. doi:10.1146/annurev.micro.56.012302.160938
[36] Chattopadhyay, S., Paranjpye, R.N., Dykhuizen, D.E., Sokurenko, E.V. and Strom, M.S. (2009) Comparative evolutionary analysis of the major structural subunit of Vibrio vulnificus type IV pili. Molecular Biology and Evolution, 26, 2185-2196. doi:10.1093/molbev/msp124
[37] Hazes, B., Sastry, P.A., Hayakawa, K., Read, R.J. and Irvin, R.T. (2000) Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. Journal of Molecular Biology, 299, 1005-1017. doi:10.1006/jmbi.2000.3801
[38] Audette, G.F., Irvin, R.T., and Hazes, B. (2004) Crystallographic analysis of the Pseudomonas aeruginosa strain K122-4 monomeric pilin reveals a conserved receptorbinding architecture. Biochemistry, 43, 11427-11435. doi:10.1021/bi048957s
[39] Craig, L., Volkmann, N., Arvai, A.S., Pique, M.E., Yeager, M., Egelman, E.H. and Tainer, J.A. (2006) Type IV pilus structure by cryo-electron microscopy and crystallography: Implications for pilus assembly and functions. Molecular Cell, 23, 651-662. doi:10.1016/j.molcel.2006.07.004
[40] Harvey, H., Habash, M., Aidoo, F. and Burrows, L.L. (2009) Single residue changes in the C terminal disulfidebonded loop of the Pseudomonas aeruginosa type IV pilin influence pilus assembly and twitching motility. Journal of Bacteriology, 191, 6513-6524. doi:10.1128/JB.00943-09
[41] Xiao, Y.H., Yin, M.H., Hou, L., Luo, M. and Pei, Y. (2007) Asymmetric overlap extension PCR method bypassing intermediate purification and the amplification of wildtype template in site-directed mutagenesis. Biotechnology Letters, 29, 925-930. doi:10.1007/s10529-007-9327-4
[42] Rekecki, A., Gunasekara, R.A.Y.S.A., Dierckens, K., Laureau, S., Boon, N., Favoreel, H., et al. (2012) Bacterial host interaction of GFP-labelled Vibrio anguillarum HI610 with gnotobiotic sea bass, Dicentrarchus labrax L., larvae. Journal of Fish Diseases, 35, 265-273. doi:10.1111/j.1365-2761.2011.01342.x
[43] Hong, G.E., Kim, D.G., Bae, J.Y., Ahn, S.H., Bai, S.C. and Kong, I.S. (2007) Species specific PCR detection of the fish pathogen Vibrio anguillarum, using the amiB gene, which encodes N-acetylmuramoyl-L-alanine amidase. FEMS Microbiology Letters, 269, 201-206. doi:10.1111/j.1574-6968.2006.00618.x
[44] Forslund, A.L., Salomonsson, E.N., Golovliov, I., Kuoppa, K, Michell, S., Titball, R., et al. (2010) The type IV pilin, PilA, is required for full virulence of Francisella tularensis subspecies tularensis. BMC Microbiology, 10, 227. doi:10.1186/1471-2180-10-227
[45] Aagesen, A.M. and Hase, C.C. (2012) Sequence analyses of type IV pili from Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Microbial Ecology, 64, 509524. doi:10.1007/s00248-012-0021-2
[46] Hsiao, A., Liu, Z., Joelsson, A., Zhu, J. (2006) Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proceedings of the National Academy of Sciences USA, 103, 14542-14547. doi:10.1073/pnas.0604650103
[47] Meibom, K.L., Li, X.B., Nielsen, A.T., Wu, C.Y., Roseman, S. and Schoolnik, G.K. (2004) The Vibrio cholerae chitin utilization program. Proceedings of the National Academy of Sciences USA, 101, 2524-2529. doi:10.1073/pnas.0308707101
[48] Frischkorn, K., Stojanovski, A. and Paranjpye, R. (2013) Vibrio parahaemolyticus type IV pili mediate interactions with diatom-derived chitin and point to an unexplored mechanism of environmental persistence. Environmental Microbiology. doi:10.1111/1462-2920.12093
[49] Zaku, S.G., Emmanuel, S.A., Aguzue, O.C. and Thomas, S.A. (2011) Extraction and characterization of chitin; a functional biopolymer obtained from scales of common carp fish (Cyprinus carpio L.): A lesser known source. African Journal of Food Science, 5, 478-483.
[50] Chiavelli, D.A., Marsh, J.W. and Taylor, R.K. (2001) The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Applied and Environmental Microbiology, 67, 3220-3225. doi:10.1128/AEM.67.7.3220-3225.2001
[51] Simon, R., Priefer, U. and Pühler, A. (1983) A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gramnegative bacteria. Biotechnology, 1, 784-791. doi:10.1038/nbt1183-784
[52] Philippe, N., Alcaraz, J.P., Coursange, E., Geiselmann, J. and Schneider, D. (2004) Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid, 51, 246-255. doi:10.1016/j.plasmid.2004.02.003

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.