Share This Article:

Visible photoluminescence of polyoxoniobates in aqueous solution and their high electrocatalytic activities for water oxidation

Abstract Full-Text HTML Download Download as PDF (Size:2491KB) PP. 59-69
DOI: 10.4236/ojic.2013.33009    3,619 Downloads   6,870 Views   Citations

ABSTRACT

The photoluminescence of four polyoxoniobates [Nb6O19]8-, [Nb10O28]6-, [Ti2Nb8O28]8- and [H2Si4Nb16O56]14- was observed, and its origin was revealed in the view of molecular orbital by means of the computational method. The photoluminescence is originated from singlet transitions, and the calculated values agree well with the experimental data. The results indicate that the size of clusters and the foreigner atoms can affect the fluorescent properties of PONbs. The absorption and emission of these PONbs are originated molecular orbitals contributed mainly by μ2-O and Nb atoms according to NBO analysis. These PONbs were also found as electrochemical catalysts with high performance for water oxidation, which can effectively split water into oxygen under basic condition with a high catalytic current, and pH values have remarkable influence on the electrocatalytic activities of these PONbs for water oxidation.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Ye, Y. , Chen, C. , Feng, H. , Zhou, J. , Ma, J. , Chen, J. , Yuan, J. , Kong, L. and Qian, Z. (2013) Visible photoluminescence of polyoxoniobates in aqueous solution and their high electrocatalytic activities for water oxidation. Open Journal of Inorganic Chemistry, 3, 59-69. doi: 10.4236/ojic.2013.33009.

References

[1] Rhule, J.T., Hill, C.L. and Judd, D.A. (1998) Polyoxometalates in medicine. Chemial Review, 98, 327-357. doi:10.1021/cr960396q
[2] Nyman, M., Bonhomme, F., Alam, T.M., Rodriguez, M. A., Cherry, B.R., Krumhansl, J.L., Nenoff, T.M. and Sattler, A.M. (2002) A general synthetic procedure for heteropolyniobates. Science, 297, 996-998.
[3] Kudo, A. and Miseki, Y. (2009) Heterogeneous photocatalyst materials for water splitting. Chemical Society Review, 38, 253-278. doi:10.1039/b800489g
[4] Rustad, J.R. and Casey, W.H. (2012) Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6. Nature Material, 11, 189-194. doi:10.1038/nmat3214
[5] Nyman, M. (2011) Polyoxoniobate chemistry in the 21st century. Dalton Transactions, 40, 8049-8058. doi:10.1039/c1dt10435g
[6] Casey, W.H., Rustad, J.R. and Spiccia, L. (2009) Minerals as molecules-use of aqueous oxide and hydroxide clusters to understand geochemical reactions. Chemical Europe Journal, 15, 4496-4515. doi:10.1002/chem.200802636
[7] Lindqvist, I. (1952) The structure of the hexaniobate ion in 7Na2O?6Nb2O5?32H2O. Ark Kemi, 5, 247-250.
[8] Graeber, E.J. and Morosin, B. (1977) The molecular configuration of the decaniobate ion (Nb10 ). Acta Crystallographica, Section B, 33, 2137-2143. doi:10.1107/S0567740877007900
[9] Maekawa, M., Ozawa, Y. and Yagasaki, A. (2005) Icosaniobate:?A new member of the isoniobate family Inorganic Chemistry, 45, 9608-9609.
[10] Ranko, P. and Nyman, M. (2006) Evolution of polyoxoniobate cluster anions. Angewandte Chemie International Edition, 45, 6670-6672. doi:10.1002/anie.200602200
[11] Nyman, M., Bonhomme, F., Alam, T.M., Parise, J.B. and Vaughan, G.M.B. (2004) [SiNb12O40]16? and [GeNb12O40]16?: Highly charged keggin ions with sticky surfaces. Angewandte Chemie International Edition, 43, 2787-2792. doi:10.1002/anie.200353410
[12] Nyman, M., Celestian, A.J., Parise, J.B., Holland, G.P. and Alam, T.M. (2006) Solid-state structural characterization of a rigid framework of lacunary heteropolyniobates. Inorganic Chemistry, 45, 1043-1052. doi:10.1021/ic051155g
[13] Ohlin, C.A., Villa, E.M., Fettinger, J.C. and Casey, W.H. (2008) The [Ti12Nb6O44]10? ion—A new type of polyoxometalate structure. Angewandte Chemie International Edition, 47, 5634-5636. doi:10.1002/anie.200801883
[14] Ohlin, C.A., Villa, E.M., Fettinger, J.C. and Casey, W.H. (2009) A new titanoniobate ion-completing the series [Nb10O28]6?, [TiNb9O28]7? and [Ti2Nb8O28]8?. Dalton Transactions, 15, 2677-2678. doi:10.1039/b900465c
[15] Johnson, R.L., Villa, E.M., Ohlin, C.A., Rustad, J.R. and Casey, W.H. (2011) 17O NMR and computational study of a tetrasiliconiobate ion, [H2+xSi4Nb16O56](14?x)?. Chemical Europe Journal, 17, 9359-9367. doi:10.1002/chem.201100004
[16] Huang, P., Qin, C., Wang, X.L., Sun, C.Y., Xing, Y., Wang, H.N., Shao, K.Z. and Su, Z.M. (2012) A new organic-inorganic hybrid based on the crescent-shaped polyoxoanion [H6SiNb18O54]8? and copper-organic cations. Dalton Transactions, 41, 6075-6077. doi:10.1039/c2dt30265a
[17] Black, J.R., Nyman, M. and Casey, W.H. (2006) Rates of oxygen exchange between the [HxNb6O19]8?x(aq) lindqvist ion and aqueous solutions. Journal American Chemical Society, 128, 14712-14720.
[18] Villa, E.M., Ohlin, C.A., Balogh, E., Anderson, T.M., Nyman, M.D. and Casey, W.H. (2008) Reaction dynamics of the decaniobate ion [HxNb10O28](6?x)? in Water. Angewandte Chemie International Edition, 47, 4844-4846. doi:10.1002/anie.200801125
[19] Villa, E.M., Ohlin, A., Rustad, J.R. and Casey, W.H. (2009) Isotope-exchange dynamics in isostructural decametalates with profound differences in reactivity. Journal of American Chemical Society, 131, 16488- 16492. doi:10.1021/ja905166c
[20] Johnson, R.L., Villa, E.M., Ohlin, C.A., Rustad, J.R. and Casey, W.H. (2011) 17O NMR and computational study of a tetrasiliconiobate ion, [H2+xSi4Nb16O56](14?x)?. Chemical Europe Journal, 17, 9359-9367. doi:10.1002/chem.201100004
[21] Antonio, M.R., Nyman, M. and Anderson, T.M. (2009) Direct observation of contact ion-pair formation in aqueous solution, Angewandte Chemie International Edition, 48, 6136-6140. doi:10.1002/anie.200805323
[22] Ohlin, C.A., Villa, E.M., Fettinger, J.C. and Casey, W.H. (2008) Distinctly different reactivities of two similar polyoxoniobates with hydrogen peroxide. Angewandte Chemie International Edition, 47, 8251-8254. doi:10.1002/anie.200803688
[23] Zhou, X.F., Li, Z.C., Wang, Y.Q., Sheng, X. and Zhang, Z.J. (2008) Photoluminescence of amorphous niobium oxide films synthesized by solid-state reaction. Thin Solid Films, 516, 4213-4216. doi:10.1016/j.tsf.2007.12.112
[24] Qian, Z.S., Chen, C.C., Chen, J.R., Kong, L.C., Wang, C., Zhou, J. and Feng, H. (2011) Unusual visible luminescence of aluminium polyoxocations in aqueous Solution. Chemical Communication, 47, 12652-12654. doi:10.1039/c1cc15823f
[25] Musa, K.A.K. and Eriksson, L.A. (2009) Photodegradation mechanism of nonsteroidal anti-inflammatory drugs containing thiophene moieties: Suprofen and tiaprofenic acid. Journal of Physical Chemistry B, 113, 11306-11313. doi:10.1021/jp904171p
[26] Cardenas-Jiron, G.I., Barboza, C.A., Lopez, R. and Menendez, M.I. (2011) Theoretical study on the electronic excitations of a porphyrin-polypyridyl ruthenium (II) photosensitizer. Journal of Physical Chemistry A, 115, 11988-11997. doi:10.1021/jp202377d
[27] Tomasi, J., Mennucci, B., Cammi, R. (2005) Quantum mechanical continuum solvation models. Chemical Review, 105, 2999-3094. doi:10.1021/cr9904009
[28] Runge, E. and Gross, E.K.U. (1984) Density-functional theory for time-dependent systems. Physical Review Letters, 52, 997-1000. doi:10.1103/PhysRevLett.52.997
[29] Scalmani, G., Frisch, M.J., Mennucci, B., Tomasi, J., Cammi, R. and Barone, V. (2006) Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. Journal of Chemical Physics, 124, 94-107.
[30] Dreuw, A., Plotner, J., Lorenz, L., Wachtveitl, J., Djanhan, J.E., Bruning, J., Metz, T., Bolte, M. and Schmidt, M.U. (2005) Molecular mechanism of the solid-state fluorescence behavior of the organic pigment yellow 101 and its derivatives. Angewandte Chemie International Edition, 44, 7787-7786. doi:10.1002/anie.200501781
[31] Fortage, J., Peltier, C., Perruchot, C., Takemoto, Y., Teki, Y., Bedioui, F., Marvaud, V., Dupeyre, G., Pospisil, L., Adamo, C., Hromadova, M., Ciofini, I. and Laine, P.P. (2012) Single-step versus stepwise two-electron reduction of polyarylpyridiniums: Insights from the steric switching of redox potential compression. Journal of Chemical Physics, 134, 2691-2705.
[32] Bereau, V., Duhayon, C., Sournia-Saquet, A. and Sutter, J.-P. (2012) Tuning of the emission efficiency and HOMO-LUMO band gap for ester-functionalized {Al(salophen)(H2O)2}+ blue luminophors. Inorganic Chemistry, 51, 1309-1318. doi:10.1021/ic201208c
[33] Reed, A.E., Curtiss, L.A. and Weinhold, F. (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Review, 88, 899-926. doi:10.1021/cr00088a005
[34] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann,, Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G. A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J. B., Ortiz, J.V., Cioslowski, J. and Fox, D.J. (2009) Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT.
[35] Stracke, J.J. and Finke, R.G. (2011) Electrocatalytic Water Oxidation Beginning with the Cobalt Polyoxometalate [Co4(H2O)2(PW9O34)2]10–: Identification of heterogeneous CoOx as the dominant catalyst. Journal of the American Chemical Society, 133, 14872-14875. doi:10.1021/ja205569j
[36] Toma, F.M., Sartorel, A., Lurlo, M., Carraro, M., Parisse, P., Maccato, C., Rapino, S., Gonzalez, B.R., Amenitsch, H., DaRos, G.T., Casalis, L., Goldoni, A., Marcaccio, M., Scorrano, G., Scoles, F., Paolucci, M. and Prato, B.M. (2010) Efficient water oxidation at carbon nanotubepolyoxometalate electrocatalytic interfaces. Nature Chemistry, 2, 826-831.
[37] Concepcion, J.J., Jurss, J.W., Hoertz, P.G. and Meyer, T.J. (2009) Catalytic and surface-electrocatalytic water oxidation by redox mediator-catalyst assemblies. Angewandte Chemie International Edition, 48, 9473-9476. doi:10.1002/anie.200901279
[38] Stracke, J.J. and Finke, R.G., (2011) Electrocatalytic Water Oxidation Beginning with the Cobalt Polyoxometalate [Co4(H2O)2(PW9O34)2]10–: Identification of heterogeneous CoOx as the dominant catalyst. Journal of the American Chemical Society, 133, 14872-14875. doi:10.1021/ja205569j
[39] Wasylenko, D.J., Palmer, R.D., Schott, E. and Berlinguette, C.P. (2012) Interrogation of electrocatalytic water oxidation mediated by a cobalt complex. Chemical Communications, 48, 2107-2109. doi:10.1039/c2cc16674g

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.