Evaluating Biomass of Juniper Trees (Juniperus pinchotii) from Imagery-Derived Canopy Area Using the Support Vector Machine Classifier

Abstract

Both temporal and spatial magnitude, structure, and distribution of rangeland aboveground biomass (AGB) are important inputs for many necessities, in particular for estimating terrestrial carbon amount, ecosystem productivity, climate change studies, and potential bioenergy uses. Much of the remote sensing research previously completed has focused on determining carbon stocks in forested ecosystems with little attention directed to estimate AGB amount in rangelands. Our objectives were to: 1) identify and delineate individual redberry juniper (Juniperus pinchotii) plants from surrounding live vegetation using the support vector machine method for classifying two-dimensional (2D) geospatial imagery with a 1-m spatial resolution at two sites; and 2) develop regression models relating imagery-derived and fieldmeasured single tree canopy area and diameter for dry AGB estimation. The regression results show that there were very close and significant relationships between field measured juniper plant AGB and canopy area derived from the image classification with r2 > 0.90. These results suggest that spectral reflectance recorded on 2D high resolution imagery is capable to assess and quantify AGB as a quick, repeatable, and unbiased method over large land areas.

Share and Cite:

M. Mirik, S. Chaudhuri, B. Surber, S. Ale and R. Ansley, "Evaluating Biomass of Juniper Trees (Juniperus pinchotii) from Imagery-Derived Canopy Area Using the Support Vector Machine Classifier," Advances in Remote Sensing, Vol. 2 No. 2, 2013, pp. 181-192. doi: 10.4236/ars.2013.22021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. F. Glenn, L. P. Spaete, T. T. Sankey, D. R. Derryberry, S. P. Hardegree and J. J. Mitchell, “Errors in LiDAR-Derived Shrub Height and Crown Area on Sloped Terrain,” Journal of Arid Environments, Vol. 75, No. 4, 2011, pp. 377-382. doi:10.1016/j.jaridenv.2010.11.005
[2] J. E. Nichol and M. L. R. Sarker, “Improved Biomass Estimation Using the Texture Parameters of Two HighResolution Optical Sensors,” IEEE Transactions on Geoscience And Remote Sensing, Vol. 49, No. 3, 2011, pp. 930-948. doi:10.1109/TGRS.2010.2068574
[3] E. K. Strand, L. A. Vierling, A. M. S. Smith and S. C. Bunting, “Net Changes in Aboveground Woody Carbon Stock in Western Juniper Woodlands, 1946-1998,” Journal of Geophysical Research D: Atmospheres, Vol. 113, No. G01013, 2008, pp. 1-13.
[4] Z. Wang, C. B. Schaaf, P. Lewis, Y. Knyazikhin, M. A. Schull, A. H. Strahler, T. Yao, R. B. Myneni, M. J. Chopping and B. J. Blair, “Retrieval of Canopy Height Using Moderate-Resolution Imaging Spectroradiometer (MODIS) Data,” Remote Sensing of Environment, Vol. 115, No. 6, 2011, pp. 1595-1601. doi:10.1016/j.rse.2011.02.010
[5] K. Brinkmann, U. Dickhoefer, E. Schlecht and A. Buerkert, “Quantification of Aboveground Rangeland Productivity and Anthropogenic Degradation on the Arabian Peninsula Using Landsat Imagery and Field Inventory Data,” Remote Sensing of Environment, Vol. 115, No. 2, 2011, pp. 465-474. doi:10.1016/j.rse.2010.09.016
[6] C. Huang, S. E. Marsh, M. P. McClaran and S. R. Archer, “Postfire Stand Structure in a Semiarid Savanna: CrossScale Challenges Estimating Biomass,” Ecological Applications, Vol. 17, No. 7, 2007, pp. 1899-1910. doi:10.1890/06-1968.1
[7] E. T. A. Mitchard, S. S. Saatchi, S. L. Lewis, T. R. Feldpausch, I. H. Woodhouse, B. Sonké, C. Rowland and P. Meir, “Measuring Biomass Changes Due to Woody Encroachment and Deforestation/Degradation in a ForestSavanna Boundary Region of Central Africa Using MultiTemporal L-Band Radar Backscatter,” Remote Sensing of Environment, Vol. 115, No. 11, 2011, pp. 2861-2873. doi:10.1016/j.rse.2010.02.022
[8] K. P. Paudel and P. Andersen, “Assessing Rangeland Degradation Using Multi Temporal Satellite Images and Grazing Pressure Surface Model in Upper Mustang, Trans Himalaya, Nepal,” Remote Sensing of Environment, Vol. 114, No. 8, 2010, pp. 1845-1855. doi:10.1016/j.rse.2010.03.011
[9] R. Sonnenschein, T. Kuemmerle, T. Udelhoven, M. Stellmes and P. Hostert, “Differences in Landsat-Based Trend Analyses in Drylands Due to the Choice of Vegetation Estimate,” Remote Sensing of Environment, Vol. 115, No. 6, 2011, pp. 1408-1420. doi:10.1016/j.rse.2011.01.021
[10] R. J. Ansley, M. Mirik, B. W. Surber and S. C. Park, “Canopy Area and Aboveground Mass of Individual Redberry Juniper (Juniperus pinchotii Sudw.) Trees,” Rangeland Ecology & Management, Vol. 65, No. 2, 2012, pp. 189-195. doi:10.2111/REM-D-11-00112.1
[11] M. A. Alrababah, M. N. Alhamad, A. L. Bataineh, M. M. Bataineh and A. F. Suwaileh, “Estimating East Mediterranean Forest Parameters Using Landsat ETM,” International Journal of Remote Sensing, Vol. 32, No. 6, 2011, pp. 1561-1574. doi:10.1080/01431160903573235
[12] M. L. Clark, D. A. Roberts, J. J. Ewel and D. B. Clark, “Estimation of Tropical Rain Forest Aboveground Biomass with Small-Footprint Lidar and Hyperspectral Sensors,” Remote Sensing of Environment, Vol. 115, No. 11, 2011, pp. 2931-2942. doi:10.1016/j.rse.2010.08.029
[13] S. Englhart, V. Keuck and F. Siegert, “Aboveground Biomass Retrieval in Tropical Forests—The Potential of Combined Xand L-Band SAR Data Use,” Remote Sensing of Environment, Vol. 115, No. 5, 2011, pp. 1260-1271. doi:10.1016/j.rse.2011.01.008
[14] M. T. Gebreslasie, F. B. Admed, J. A. N. Van Aardt and F. Blakeway, “Individual Tree Detection Based on Variable and Fixed Window Size Local Maximum Filtering Applied to IKONOS Imagery for Even-Aged Eucalyptus Plantation Forest,” International Journal of Remote Sensing, Vol. 32, No. 15, 2011, pp. 4141-4154. doi:10.1080/01431161003777205
[15] Y. Ke and L. J. Quackenbush, “A Review of Methods for Automatic Individual Tree-Crown Detection and Delineation from Passive Remote Sensing,” International Journal of Remote Sensing, Vol. 32, No. 17, 2011, pp. 4725-4747. doi:10.1080/01431161.2010.494184
[16] S. C. Popescu, K. Zhao, A. Neuenschwander and C. Lin, “Satellite Lidar vs. Small Footprint Airborne Lidar: Comparing the Accuracy of Aboveground Biomass Estimates and Forest Structure Metrics at Footprint Level,” Remote Sensing of Environment, Vol. 115, No. 11, 2011, pp. 2786-2797. doi:10.1016/j.rse.2011.01.026
[17] L. R. Sarker and J. E. Nichol, “Improved Forest Biomass Estimates Using ALOS AVNIR-2 Texture Indices,” Remote Sensing of Environment, Vol. 115, No. 4, 2011, pp. 968-977. doi:10.1016/j.rse.2010.11.010
[18] C. Yang, H. Huang and S. Wang, “Estimation of Tropical Forest Biomass Using Landsat TM Imagery and Permanent Plot Data in Xishuangbanna, China,” International Journal of Remote Sensing, Vol. 32, No. 20, 2011, pp. 5741-5756. doi:10.1080/01431161.2010.507677
[19] E. Nasset, “Estimating Above-Ground Biomass in Young Forests with Airborne Laser Scanning,” International Journal of Remote Sensing, Vol. 32, No. 2, 2011, pp. 473-501. doi:10.1080/01431160903474970
[20] G. Sun, K. J. Ranson, Z. Guo, Z. Zhang, P. Montesano and D. Kimes, “Forest Biomass Mapping from Lidar and Radar Synergies,” Remote Sensing of Environment, Vol. 115, No. 11, 2011, pp. 2906-2916. doi:10.1016/j.rse.2011.03.021
[21] G. Chen and G. J. Hay, “An Airborne Lidar Sampling Strategy to Model Forest Canopy Height from Quickbird Imagery and GEOBIA,” Remote Sensing of Environment, Vol. 115, No. 6, 2011, pp. 1532-1542. doi:10.1016/j.rse.2011.02.012
[22] T. Le Toan, S. Quegan, M. W. J. Davidson, H. Balzter, P. Paillou, K. Papathanassiou, S. Plummer, F. Rocca, S. Saatchi, H. Shugart and L. Ulander, “The BIOMASS Mission: Mapping Global Forest Biomass to Better Understand the Terrestrial Carbon Cycle,” Remote Sensing of Environment, Vol. 115, No. 11, 2011, pp. 2850-2860. doi:10.1016/j.rse.2011.03.020
[23] A. Swatantran, R. Dubayah, D. Roberts, M. Hofton and J. B. Blair, “Mapping Biomass and Stress in the Sierra Nevada Using Lidar and Hyperspectral Data Fusion,” Remote Sensing of Environment, Vol. 115, No. 11, 2011, pp. 2917-2930. doi:10.1016/j.rse.2010.08.027
[24] C. Song, M. B. Dickinson, L. Su, S. Zhang and D. Yaussey, “Estimating Average Tree Crown Size Using Spatial Information from Ikonos and QuickBird Images: AcrossSensor and Across-Site Comparisons,” Remote Sensing of Environment, Vol. 114, No. 5, 2010, pp. 1099-1107. doi:10.1016/j.rse.2009.12.022
[25] P. Gonzalez, G. P. Asner, J. J. Battles, M. A. Lefsky, K. M. Waring and M. Palace, “Forest Carbon Densities and Uncertainties from Lidar, QuickBird, and Field Measurements in California,” Remote Sensing of Environment, Vol. 114, No. 7, 2010, pp. 1561-1575. doi:10.1016/j.rse.2010.02.011
[26] R. J. Ansley, H. T. Weidemann, M. J. Castellano and J. E. Slosser, “Herbaceous Restoration of Juniper-Dominated Grasslands with Chaining and Fire,” Rangeland Ecology & Management, Vol. 59, No. 2, 2006, pp. 171-178. doi:10.2111/05-095R1.1
[27] I. Ozdemir, “Estimating Stem Volume by Tree Crown Area and Tree Shadow Area Extracted from Pan-Sharpened QuickBird Imagery in Open Crimean Juniper Forests,” International Journal of Remote Sensing, Vol. 29, No. 19, 2008, pp. 5643-5655. doi:10.1080/01431160802082155
[28] P. J. Starks, B. C. Venuto, J. A. Eckroat and T. Lucas, “Measuring Eastern Redcedar (Juniperus virginiana L.) Mass with the Use of Satellite Imagery,” Rangeland Ecology & Management, Vol. 64, No. 2, 2011, pp. 178-186. doi:10.2111/REM-D-10-00057.1
[29] National Oceanic and Atmospheric Administration, Climate Data Center, Asheville, 2006. http://www.ncdc.noaa.gov/ oa/ncdc.html
[30] NRCS, United States Department of Agriculture, Natural Resource Conservation Service, Plants Database Website, 2011. http://plants.usda.gov
[31] NRCS, United States Department of Agriculture, Natural Resource Conservation Service, Soil Series Descriptions Website, 2011. http://soils.usda.gov
[32] J. H. Everitt, C. Yang and H. B. Johnson, “Canopy Spectra and Remote Sensing of Ashe Juniper and Associated Vegetation,” Environmental Monitoring and Assessment, Vol. 130, No. 1-3, 2007, pp. 403-413. doi:10.1007/s10661-006-9407-2
[33] C. Yang, J. H. Everitt and H. B. Johnson, “Applying Image Transformation and Classification Techniques to Airborne Hyperspectral Imagery for Mapping Ashe Juniper Infestations,” International Journal of Remote Sensing, Vol. 30, No. 11, 2009, pp. 2741-2758. doi:10.1080/01431160802555812
[34] B. Somers, G. P. Asner, L. Tits and P. Coppin, “Endmember Variability in Spectral Mixture Analysis: A Review,” Remote Sensing of Environment, Vol. 115, No. 7, 2011, pp. 1603-1616. doi:10.1016/j.rse.2011.03.003
[35] K. W. Davies, S. L. Petersen, D. D. Johnson, D. B. Davis, M. D. Madsen, D. L. Zvirzdin and J. D. Bates, “Estimating Juniper Cover from National Agriculture Imagery Program (NAIP) Imagery and Evaluating Relationships between Potential Cover and Environmental Variables,” Rangeland Ecology & Management, Vol. 63, No. 6, 2010, pp. 630-637. doi:10.2111/REM-D-09-00129.1
[36] S. L. Petersen and T. K. Stringham, “Development of GIS-Based Models to Predict Plant Community Structure in Relation to Western Juniper Establishment,” Forest Ecology and Management, Vol. 256, No. 5, 2008, pp. 981-989. doi:10.1016/j.foreco.2008.05.058
[37] T. T. Sankey, N. Glenn, S. Ehinger, A. Boehm and S. Hardegree, “Characterizing Western Juniper Expansion via a Fusion of Landsat 5 Thematic Mapper and Lidar data,” Rangeland Ecology & Management, Vol. 63, No. 5, 2010, pp. 514-523. doi:10.2111/REM-D-09-00181.1
[38] T. T. Sankey and M. J. Germino, “Assessment of Juniper Encroachment with the Use of Satellite Imagery and Geospatial Data,” Rangeland Ecology & Management, Vol. 61, No. 4, 2008, pp. 412-418. doi:10.2111/07-141.1
[39] K. Hufkens, J. Bogaert, Q. H. Dong, L. Lu, C. L. Huang, M. G. Ma, T. Che, X. Li, F. Veroustraete and R. Ceulemans, “Impacts and Uncertainties of Upscaling of Remote-Sensing Data Validation for a Semi-Arid Woodland,” Journal of Arid Environments, Vol. 72, No. 8, 2008, pp. 1490-1505. doi:10.1016/j.jaridenv.2008.02.012
[40] R. M. Lucas, A. C. Lee and P. J. Bunting, “Retrieving Forest Biomass through Integration of CASI and LIDAR Data,” International Journal of Remote Sensing, Vol. 29, No. 5, 2008, pp. 1553-1577. doi:10.1080/01431160701736497
[41] D. F. Levia Jr., “A Generalized Allometric Equation to Predict Foliar Dry Weight on the Basis of Trunk Diameter for Eastern White Pine (Pinus strobus L.),” Forest Ecology and Management, Vol. 255, No. 5-6, 2008, pp. 1789-1792. doi:10.1016/j.foreco.2007.12.001
[42] S. D. Roberts, T. J. Dean, D. L. Evans, J. W. McCombs, R. L. Harrington and P. A. Glass, “Estimating Individual Tree Leaf Area in Loblolly Pine Plantations Using LiDAR-Derived Measurements of Height and Crown Dimensions,” Forest Ecology and Management, Vol. 213, No. 1-3, 2005, pp. 54-70. doi:10.1016/j.foreco.2005.03.025
[43] L. Wang, J. E. R. Hunt, J. J. Qu, X. Hao and C. S. T. Daughtry, “Towards Estimation of Canopy Foliar Biomass with Spectral Reflectance Measurements,” Remote Sensing of Environment, Vol. 115, No. 3, 2011, pp. 836-840. doi:10.1016/j.rse.2010.11.011
[44] R. M. Lucas, N. Cronin, M. Moghaddam, A. Lee, J. Armston, P. Bunting and C. Witte, “Integration of Radar and Landsat-Derived Foliage Projected Cover for Woody Regrowth Mapping, Queensland, Australia,” Remote Sensing of Environment, Vol. 100, No. 3, 2006, pp. 388-406. doi:10.1016/j.rse.2005.09.020
[45] R. Madugundu, V. Nizalapur and C. C. Jha, “Estimation of LAI and Above-Ground Biomass in Deciduous Forests: Western Ghats of Karnataka, India,” International Journal of Applied Earth Observation and Geoinformation, Vol. 10, No. 2, 2008, pp. 211-219. doi:10.1016/j.jag.2007.11.004
[46] A. B. Massada, Y. Carmel, G. E. Tzur, J. M. Grünzweig and D. Yakir, “Assessment of Temporal Changes in Aboveground Forest Tree Biomass Using Aerial Photographs and Allometric Equations,” Canadian Journal of Forestry Research, Vol. 36, No. 10, 2006, pp. 2585-2594. doi:10.1139/x06-152
[47] H. Holmstr?m, “Estimation of Single-Tree Characteristics Using the kNN Method and Plotwise Aerial Photograph Interpretations,” Forest Ecology and Management, Vol. 167, No. 1-3, 2002, pp. 303-314. doi:10.1016/S0378-1127(01)00720-4
[48] S. C. Popescu, “Estimating Biomass of Individual Pine Trees Using Airborne Lidar,” Biomass and Bioenergy, Vol. 31, No. 9, 2007, pp. 646-655. doi:10.1016/j.biombioe.2007.06.022
[49] G. Whiteman and J. R. Brown, “Assessment of a Method for Mapping Woody Plant Density in a Grassland Metrix,” Journal of Arid Environments, Vol. 38, No. 2, 1998, pp. 269-282. doi:10.1006/jare.1997.0325
[50] G. P. Asner, S. Archer, R. F. Hughes, R. J. Ansley and C. A. Wessman, “Net Changes in Regional Woody Vegetation Cover and Carbon Storage in Texas Drylands, 1937-1999,” Global Change Biology, Vol. 9, No. 3, 2003, pp. 316-335. doi:10.1046/j.1365-2486.2003.00594.x
[51] C. Huang, G. P. Asner, R. E. Martin, N. N. Barger and J. C. Neff, “Multiscale Analysis of Tree Cover and Aboveground Carbon Stocks in Pinyon-Juniper Woodlands,” Ecological Applications, Vol. 19, No. 3, 2009, pp. 668-681. doi:10.1890/07-2103.1
[52] O. Masera, A. Ghilardi, R. Drigo and M. Angel Trossero, “WISDOM: A GIS-Based Supply Demand Mapping Tool for Woodfuel Management,” Biomass and Bioenergy, Vol. 30, No. 7, 2006, pp. 618-637. doi:10.1016/j.biombioe.2006.01.006
[53] M. Mirik and R. J. Ansley, “Comparison of Groundmeasured and Image-Classified Honey Mesquite (Prosopis glandulosa) Canopy Cover in Texas,” Rangeland Ecology & Management, Vol. 65, No. 1, 2012, pp. 85-95. doi:10.2111/REM-D-11-00073.1
[54] R. J. Ansley, M. Mirik and M. J. Castellano, “Structural Biomass Partitioning in Regrowth and Undisturbed Mesquite (Prosopis glandulosa): Implications for Bioenergy Uses,” Global Change Biology Bioenergy, Vol. 2, No. 1, 2010, pp. 26-36. doi:10.1111/j.1757-1707.2010.01036.x
[55] E. Strand, A. Smith, S. Bunting, L. Vierling, D. Hann and P. Gessler, “Wavelet Estimation of Plant Spatial Patterns in Multitemporal Aerial Photography,” International Journal of Remote Sensing, Vol. 27, No. 10, 2006, pp. 2049-2054. doi:10.1080/01431160500444764
[56] E. N. Chidumayo, “Above-Ground Woody Biomass Structure and Productivity in a Zambezian Woodland,” Forest Ecology and Management, Vol. 36, No. 1, 1990, pp. 33-46. doi:10.1016/0378-1127(90)90062-G
[57] A. Lufafa, I. Diédhiou, N. A. S. Ndiaye, M. Séné, F. Kizito, R. P. Dick and J. S. Noller, “Allometric Relationships and Peak-Season Community Biomass Stocks of Native Shrubs in Senegal’s Peanut Basin,” Journal of Arid Environments, Vol. 73, No. 3, 2009, pp. 260-266. doi:10.1016/j.jaridenv.2008.09.020
[58] B. K. Northup, S. F. Zitzer, S. Archer, C. R. McMurtry and T. W. Boutton, “Above-Ground Biomass and Carbon and Nitrogen Content of Woody Species in a Subtropical Thornscrub Parkland,” Journal of Arid Environments, Vol. 62, No. 1, 2005, pp. 23-43. doi:10.1016/j.jaridenv.2004.09.019
[59] L. F. Ohmann, D. F. Grigal and R. B. Brander, “Biomass Estimation for Five Shrubs from Northeastern Minnesota,” Research Paper NC-133, US Department of Agriculture, Forest Service, North Central Forest Experiment Station, St. Paul, 1976.
[60] A. Rosenschein, T. Tietema and D. O. Hall, “Biomass Measurement and Monitoring of Trees and Shrubs in a Semi-Arid Region of Central Kenya,” Journal of Arid Environments, Vol. 42, No. 2, 1999, pp. 97-116. doi:10.1006/jare.1999.0509
[61] T. Tietema, “Biomass Determination of Fuelwood Trees and Bushes of Botswana, Southern Africa,” Forest Ecology and Management, Vol. 60, No. 3-4, 1993, pp. 257-269. doi:10.1016/0378-1127(93)90083-Y

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.