Atmospheric Dispersion and Deposition of Radionuclides (137Cs and 131I) Released from the Fukushima Dai-ichi Nuclear Power Plant

Abstract

The Lagrangian Particle Dispersion Model (LPDM) in the 594 km× 594 km model domain with the horizontal grid scale of 3 km×3 km centered at a power plant and the Eulerian Transport Model (ETM) modified from the Asian Dust Aerosol Model 2 (ADAM2) in the domain of 70° LAT × 140° LON with the horizontal grid scale of 27 km×27 km have been developed. These models have been implemented to simulate the concentration and deposition of radionuclides (137Cs and 131I) released from the accident of the Fukushima Dai-ichi nuclear power plant. It is found that both models are able to simulate quite reasonably the observed concentrations of 137Cs and 131I near the power plant. However, the LPDM model is more useful for the estimation of concentration near the power plant site in details whereas the ETM model is good for the long-range transport processes of the radionuclide plume. The estimated maximum mean surface concentration, column integrated mean concentration and the total deposition (wet+dry) by LPDM for the period from 12 March to 30 April 2011 are, respectively found to be 2.975 × 102 Bq m-3, 3.7 × 107 Bq m-2, and 1.78 × 1014 Bq m-2 for 137Cs and 1.96 × 104 Bq m-3, 2.24 × 109 Bq m-2 and 5.96 × 1014 Bq m-2 for 131I. The radionuclide plumes released from the accident power plant are found to spread wide regions not only the whole model domain of downwind regions but the upwind regions of Russia, Mongolia, Korea, eastern China, Philippines and Vietnam within the analysis period.

Share and Cite:

Park, S. , Choe, A. and Park, M. (2013) Atmospheric Dispersion and Deposition of Radionuclides (137Cs and 131I) Released from the Fukushima Dai-ichi Nuclear Power Plant. Computational Water, Energy, and Environmental Engineering, 2, 61-68. doi: 10.4236/cweee.2013.22B011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Tanaka, Y. Takahashi, A. Sakaguchi, M. Umeo, S. Hayakawa, H. Tanida, T. Saito and Y. Kanai, “Vertial Profiles of Iodine-131 and Cesium-137 in Soils in Fuku-shima Perfecture Related to the Fukushima Daiichi Nuc-lear Power Station Accident, ” Geochemical Journal, Vol. 46, 2012, pp. 73-76.
[2] A. Stohl, P. Seibert, G. wotawa, D. Arnold, J. F. Burkhart, S. Eckhardt, C. Tapia, A. Vargas and T. J. Yasunary, “Xenon-133 and Cae-sium-137 Releases into the Atmosphere from the Fuku-shima Dai-ichi Nuclear Power Plant: Determination of the Source Term, Atmospheric Dispersion, and Deposi-tion, Atmospheric Chemistry and Physics, Vol. 12, 2011, pp. 2313-2343. doi:10.5194/acp-12-2313-2012
[3] G. Katata, H. Terada, H. Nagai and M. Chino, “Numerical Reconstruction of High Dose Rate Zones Due to the Fukushima Dai-Ichi Nuclear Power Plant Accident”, Journal of Environment Radioactivity, Vol. 111, 2012, pp. 2-12. doi:10.1016/j.jenvrad.2011.09.011
[4] G. Katata, M. Ota, H. Terada, M. Chino and H. Nagai, “Atmospheric Discharge and Dispersion of Radionuc-lides during the Fukushima Dai-Ichi Nuclear Power Plant Accident. Part I: Source Term Estimation and Lo-cal-Scale Atmospheric Dispersion in Early Phase of the Accident,” Journal of Environment Radioactivity, Vol. 109, 2012, pp. 103-113. doi:10.1016/j.jenvrad.2012.02.006
[5] M. Chino, H. Nakayama, H. Nagai, H. Terada, G. Katata and H. Ya-mazawa, “Preliminary Estimation of Release Aounts of 131I and 137Cs Accidentally Discharded from the Fu-kushima Daiichi Nuclear Power Plant into the Atmos-phere, ”Journal of Nuclear Science and Technology, Vol. 48, 2011, pp. 1129-1134. doi:10.1080/18811248.2011.9711799
[6] S.-U. Park, “Effects of Dry Deposition on Near-Surface Concentra-tions of SO2 during Medium-Range Transport,” Journal of Applied Meteorology, Vol. 37, 1998, pp.486-496.doi:10.1175/1520-0450(1998)037<0486:EODDON>2.0.CO;2
[7] S.-U. Park, A. Choe, E.-H. Lee, M.-S. Park and X. Song, “The Asian Dust Aerosol Model 2 (ADAM2) with the Use of Normalized Difference Ve-getation Index (NDVI) Obtained from the Spot4/Vegetation Data,” Theoretical and Applied Genetics, Vol. 101, 2010, pp. 191-208. doi:10.1007/s00704-009-0244-4
[8] D. A. Grell, J. Dudhia, and D. R. Stauffer, “A Description of the 5th Generation Penn State/NCAR Mesoscale Model (MM5), NCAR TECH. Note NCAR/TN-398, p. 117.
[9] J. Dudhia, D. Grell, Y.-R. Guo, D. Hausen, K. Manning, and W. Wang, “PSU/NCAR Mesoscale Modeling System Tutorial Class Note (MM5 Modeling System Version 2).
[10] S.-U. Park and H.-J. In, “Parameterization of Dust Emission for the Simulation of the Yellow Sand (Asian dust) Observed in March 2002 in Korea,” Journal of Geophysical Research, Vol. 108, No. D19, 2003, p. 4618. doi:10.1029/2003JD003484
[11] S.-U. Park and E.-H. Lee, “Parameterization of Asian Dust (Hwangsa) Particle-Size Distributions for Use in Dust Emission Model,” Atmospheric Environment, Vol. 38, 2004, pp. 2155-2162. doi:10.1016/j.atmosenv.2004.01.024
[12] R. A. Pielke, M. Arritt, M. Segal, M. D. Moran and R. T. McNider, “Mesoscale Numerical Modeling of Pollutant Transport in Complex Terrain”, Bound-Layer Meteor, Vol. 41, 1987, pp. 59-74. doi:10.1007/BF00120431
[13] R. T. McNider, “Investigation of the Impact of Topographic Circulations on the Transport and Dispersion of Air Pol-lutions,” Ph.D. dissertation, University of Virginia, 1981, p. 195.
[14] T. Yamada, J. Kao, and S. Bunker, “Airflow and Air Quality Simulations over the Western Mountai-neous Region with a Four-Dimensional Data Assimila-tion Technique,” Atmospheric Environment, Vol.23, 1989, pp.539-554. doi:10.1016/0004-6981(89)90003-6
[15] W. L. Physick, and D. J. Abbs, “Modeling of Summertime Flow and Dispersion in the Coastal Terrain of Southeastern Asu-tralia,” Monthly Weather Review, Vol.119, 1991,pp.1014-1030. doi:10.1175/1520-0493(1991)119<1014:MOSFAD>2.0.CO;2
[16] F. B. Smith, “Conditioned particle motion in a homogenous turbulent field,” Atmospheric Environ-ment, Vol.2, 1968,pp.491-508.doi:10.1016/0004-6981(68)90042-5
[17] B. J. Legg, and M. R. Raupach, “Markov-Chain Si-mulations of Particle Deposition in Homogeneous Flows: The Mean Drift Velocity Induced by a Gradient in Eule-rian Velocity Variance”, Bound.-Layer Meteor, Vol.24, 1982, pp.3-13. doi:10.1007/BF00121796
[18] M. L. Wesely, “Parameterization of Surface Resistances to Gaseous Dry Deposition in Regional-Scale Numerical Models,” Atmospheric Environment, Vol.23, 1989, pp.1293-1304. doi:10.1016/0004-6981(89)90153-4
[19] M. L. Wesely and B. B. Hicks, “Some Factors that Affect the Disper-sion Rates of Sulfur Dioxide and Similar Gases on Ve-getation”, Journal of Air Pollution Control Associa-tion,Vol.27,1977,pp.1110-1116. doi:10.1080/00022470.1977.10470534
[20] C. J. Wal-cek, and G. R. Taylor, “A Theoretical Method for Com-puting Vertical Distributions of Acidity and Sulfate Pro-duction within Cumulus Clouds,” J. Atmos. Sci., 43,1986,pp.339-355. doi:10.1175/1520-0469(1986)043<0339:ATMFCV>2.0.CO;2
[21] J. S. Chang, R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W. R. Stockwell and C. J. Walcek, “A Three-Dimensional Eulerian Acid Deposition Model: Physical Concepts and Formulation,” Journal of Geophysical Research, Vol. 92, 1987, pp. 14681-14700. doi:10.1029/JD092iD12p14681
[22] R. L. Dennis, J. N. McHenry, W. R. Barchet, F. S. Binkovski and D. W. Byun, “Correcting RADM’s Sulfate Underprediction: Discovery and Correction of Model Errors and Testing the Corrections through Comparisons against Field Da-ta,” Atmospheric Environment, Vol. 27A, No. 6, 1993, pp. 975-997.
[23] S. Furuta, S. Sumiya, H. Watanabe, M. Nakano, K. Imaizumi, M. Takeyasu, A. Nakada, H. Fuji-ta, T. Mizutani, M. Morisawa, Y. Kokubun, T. Kono, M. Nagaoka, Y. Hiyama, T. Onuma, C. Kato and T. Kurachi, “Results of the Environmental Radiation Monitoring Following the Accident at the Fukushima Daiichi Nuclear Power Plant,” JAEA-Review, Vol. 035, 2011, p. 89.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.