Mir-21 Regulation of MARCKS Protein and Mucin Secretion in Airway Epithelial Cells

Abstract

Hypersecretion of mucus characterizes many inflammatory airway diseases, including asthma, chronic bronchitis, and cystic fibrosis. Excess mucus causes airway obstruction, reduces pulmonary function, and can lead to increased morbidity and mortality. MicroRNAs are small non-coding pieces of RNA which regulate other genes by binding to a complementary sequence in the target mRNA. The microRNA miR-21 is upregulated in many inflammatory conditions and, interestingly, miR-21 has been shown to target the mRNA of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS), a protein that is an important regulator of airway mucin (the solid component of mucus) secretion. In these studies, we determined that exposure of primary, well-differentiated, normal human bronchial epithelial (NHBE) cells to the pro-inflammatory stimulus lipopolysaccharide (LPS) increased expression of both miR-21 and MARCKS in a time-dependent manner. To investigate whether miR-21 regulation of MARCKS played a role in mucin secretion, two separate airway epithelial cell lines, HBE1 (papilloma virus transformed) and NCI-H292 (mucodepidermoid derived) were utilized, since manipulation of miR-21 is performed via transfection of commercially-available miR-21 inhibitors and mimics/activators. Treatment of HBE1 cells with LPS caused concentration-dependent increases in expression of both miR-21 and MARCKS mRNA and protein. The miR-21 inhibitor effectively reduced levels of miR-21 in the cells, coincident with an increase in MARCKS mRNA expression over time as well as enhanced mucin secretion, while the miR-21 mimic/activator increased levels of miR-21, which coincided with a decrease in expression of MARCKS and a decrease in mucin secretion. These results suggest that miR-21 is increased in airway epithelial cells following exposure to LPS, and that miR-21 downregulates expression of MARCKS, which may decrease mucin secretion by the cells. Thus, miR-21 may act as a negative feedback regulator of mucin secretion in airway epithelial cells, and may do so, at least in part, by downregulating expression of MARCKS.

Share and Cite:

Lampe, W. , Fang, S. , Yin, Q. , Crews, A. , Park, J. and Adler, K. (2013) Mir-21 Regulation of MARCKS Protein and Mucin Secretion in Airway Epithelial Cells. Open Journal of Respiratory Diseases, 3, 89-96. doi: 10.4236/ojrd.2013.32014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. C. Rose and J. A. Voynow “Respiratory Tract Mucin Genes and Mucin Glycoproteins in Health and Disease,” Physiological Reviews, Vol. 86, No. 1, 2006, pp. 245-278. doi:10.1152/physrev.00010.2005
[2] P. Thai, A. Loukoianov, S. Wachi and R. Wu, “Regulation of Airway Mucin Gene Expression,” Annual Review of Physiology, Vol. 70, 2008, pp. 405-429. doi:10.1146/annurev.physiol.70.113006.100441
[3] Y. Li, L. D. Martin, G. Spizz and K. B. Adler, “MARCKS Protein Is a Key Molecule Regulating Mucin Secretion by Human Airway Epithelial Cells in Vitro,” Journal of Biological Chemistry, Vol. 276, No. 44, 2001, pp. 40982-40990. doi:10.1074/jbc.M105614200
[4] J. A. Park, A. L. Crews, W. R. Lampe, S. Fang, J. Park and K. B. Adler, “Protein Kinase C Delta Regulates Airway Mucin Secretion via Phosphorylation of MARCKS Protein,” American Journal of Pathology, Vol. 171, No. 6, 2007, pp. 1822-1830. doi:10.2353/ajpath.2007.070318
[5] J. Park, S. Fang, A. L. Crews, K. W. Lin and K. B. Adler, “MARCKS Regulation of Mucin Secretion by Airway Epithelium in Vitro: Interaction with Chaperones,” American Journal of Respiratory Cell and Molecular Biology, Vol. 39, No. 1, 2008 pp. 68-76. doi:10.1165/rcmb.2007-0139OC
[6] M. Singer, L. D. Martin, B. B. Vargaftig, J. Park, A. D. Gruber, Y. Li, et al., “A MARCKS-Related Peptide Blocks Mucus Hypersecretion in a Mouse Model of Asthma,” Nature Medicine, Vol. 10, No. 2, 2004, pp. 193-196. doi:10.1038/nm983
[7] A. Agrawal, S. Rengarajan, K. B. Adler, A. Ram, B. Ghosh, M. Fahim, et al., “Inhibition of Mucin Secretion with MARCKS-Related Peptide Improves Airway Obstruction in a Mouse Model of Asthma,” Journal of Applied Physiology, Vol. 102, No. 1, 2007, pp. 399-405. doi:10.1152/japplphysiol.00630.2006
[8] A. M. Cheng, M. W. Byrom, J. Shelton and L. P. Ford, “Antisense Inhibition of Human miRNAs and Indications for an Involvement of miRNA in Cell Growth and Apoptosis,” Nucleic Acids Research, Vol. 33, No. 4, 2005, pp. 1290-1297. doi:10.1093/nar/gki200
[9] C. Z. Chen, L. Li, H. F. Lodish and D. P. Bartel, “MicroRNAs Modulate Hematopoietic Lineage Differentiation,” Science, Vol. 303, No. 5654, 2004, pp. 83-86. doi:10.1126/science.1091903
[10] R. Madhyastha, H. Madhyastha, Y. Nakajima, S. Omura and M. Maruyama, “MicroRNA Signature in Diabetic Wound Healing: Promotive Role of miR-21 in Fibroblast Migration,” International Wound Journal, Vol. 9, No. 4, 2012, pp. 355-361. doi:10.1111/j.1742-481X.2011.00890.x
[11] L. Poliseno, A. Tuccoli, L. Mariani, M. Evangelista, L. Citti, K. Woods, et al., “MicroRNAs Modulate the Angiogenic Properties of HUVECs,” Blood, Vol. 108, No. 9, 2006, pp. 3068-3071. doi:10.1182/blood-2006-01-012369
[12] P. F. Vaughan, J. H. Walker and C. Peers, “The Regulation of Neurotransmitter Secretion by Protein Kinase C,” Molecular Neurobiology, Vol. 18, No. 2, 1998, pp. 125-155. doi:10.1007/BF02914269
[13] Y. Lee, C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, et al., “The Nuclear RNase III Drosha Initiates microRNA Processing,” Nature, Vol. 425, No. 425, 2003, pp. 415-419. doi:10.1038/nature01957
[14] P. Xu, M. Guo, B. A. Hay, “MicroRNAs and the Regulation of Cell Death,” Trends in Genetics, Vol. 20, No. 12, 2004, pp. 617-624. doi:10.1016/j.tig.2004.09.010
[15] E. Tili, C. M. Croce and J. J. Michaille, “miR-155: On the Crosstalk between Inflammation and Cancer,” International Reviews of Immunology, Vol. 28, No. 5, 2009. pp. 264-284. doi:10.1080/08830180903093796
[16] M. Weber, M. B. Baker, J. P. Moore and C. D. Searles, “MiR-21 Is Induced in Endothelial Cells by Shear Stress and Modulates Apoptosis and eNOS Activity,” Biochemical and Biophysical Research Communications, Vol. 393, No. 4, 2010, pp. 643-648. doi:10.1016/j.bbrc.2010.02.045
[17] C. Sabatel, L. Malvaux, N. Bovy, C. Deroanne, V. Lambert, M. L. Gonzalez, et al., “MicroRNA-21 Exhibits Antiangiogenic Function by Targeting RhoB Expression in Endothelial Cells,” PLoS One, Vol. 6, No. 2, 2011, p. e16979. doi:10.1371/journal.pone.0016979
[18] C. K. Sen and S. Roy, “MicroRNA 21 in Tissue Injury and Inflammation,” Cardiovascular Research, Vol. 96, No. 2, 2012, pp. 230-233. doi:10.1093/cvr/cvs222
[19] J. P. Thiery, “Epithelial-Mesenchymal Transitions in Development and Pathologies,” Current Opinion in Cell Biology, Vol. 15, No. 6, 2003, pp. 740-746. doi:10.1016/j.ceb.2003.10.006
[20] T. Li, D. Li, J. Sha, P. Sun and Y. Huang, “MicroRNA-21 Directly Targets MARCKS and Promotes Apoptosis Resistance and Invasion in Prostate Cancer Cells,” Biochemical and Biophysical Research Communications, Vol. 383, No. 3, 2009, pp. 280-285. doi:10.1016/j.bbrc.2009.03.077
[21] T. M. Krunkosky, B. M. Fischer, L. D. Martin, N. Jones, N. J. Akley and K. B. Adler, “Effects of TNF-Alpha on Expression of ICAM-1 in Human Airway Epithelial Cells in Vitro. Signaling Pathways Controlling Surface and Gene Expression,” American Journal of Respiratory Cell and Molecular Biology, Vol. 22, No. 6, 2000, pp. 685-692. doi:10.1165/ajrcmb.22.6.3925
[22] J. R. Yankaskas, J. E. Haizlip, M. Conrad, D. Koval, E. Lazarowski, A. M. Paradiso, et al., “Papilloma Virus Immortalized Tracheal Epithelial Cells Retain a Well-Differentiated Phenotype,” American Journal of Physiology, Vol. 264, No. 5, 1993, pp. C1219-C1230.
[23] T. M. Krunkosky, B. M. Fischer, N. J. Akley and K. B. Adler, “Tumor Necrosis Factor Alpha (TNF Alpha)-Induced ICAM-1 Surface Expression in Airway Epithelial Cells in Vitro: Possible Signal Transduction Mechanisms,” Annals of the New York Academy Sciences, Vol. 796, 1996, pp. 30-37. doi:10.1111/j.1749-6632.1996.tb32564.x
[24] H. Kai, K. Yoshitake, A. Hisatsune, T. Kido, Y. Isohama, K. Takahama, et al., “Dexamethasone Suppresses Mucus Production and MUC-2 and MUC-5AC Gene Expression by NCI-H292 Cells,” American Journal of Physiology, Vol. 271, No. 3, 1996, pp. L484-L488.
[25] J. Milosevic, K. Pandit, M. Magister, E. Rabinovich, D. C. Ellwanger, G. Yu, et al., “Profibrotic Role of miR-154 in Pulmonary Fibrosis,” American Journal of Respiratory Cell and Molecular Biology, Vol. 47, No. 6, 2012, pp. 879-887. doi:10.1165/rcmb.2011-0377OC
[26] H. Lin, D. M. Carlson, J. A. St George, C. G. Plopper and R. Wu, “An ELISA Method for the Quantitation of Tracheal Mucins from Human and Nonhuman Primates,” American Journal of Respiratory Cell and Molecular Biology, Vol. 1, No. 1, 1989, pp. 41-48. doi:10.1165/ajrcmb/1.1.41
[27] T. D. Green, A. L. Crews, J. Park, S. Fang and K. B. Adler, “Regulation of Mucin Secretion and Inflammation in Asthma: A Role for MARCKS Protein?” Biochimica et Biophysica Acta, Vol. 1810, No. 11, 2011, pp. 1110-1113. doi:10.1016/j.bbagen.2011.01.009
[28] Y. X. Zeng, K. Somasundaram and W. S. El-Deiry, “AP2 Inhibits Cancer Cell Growth and Activates p21WAF1/ CIP1 Expression,” Nature Genetics, Vol. 15, No. 1, 1997, pp. 78-82. doi:10.1038/ng0197-78
[29] M. Hulsmans, D. De Keyzer and P. Holvoet, “MicroR-NAs Regulating Oxidative Stress and Inflammation in Relation to Obesity and Atherosclerosis,” FASEB Journal, Vol. 25, No. 8, 2011, pp. 2515-2527. doi:10.1096/fj.11-181149
[30] D. Warburton, W. Shi and B. Xu, “TGF-Beta-Smad3 Signaling in Emphysema and Pulmonary Fibrosis: An Epigenetic Aberration of Normal Development?” American Journal of Physiology—Lung Cellular and Molecular Physiology, 2012.
[31] K. W. Lin, S. Fang, J. Park, A. L. Crews and K. B. Adler, “MARCKS and Related Chaperones Bind to Unconventional Myosin V Isoforms in Airway Epithelial Cells,” American Journal of Respiratory Cell and Molecular Biology, Vol. 43, No. 2, pp. 131-136. doi:10.1165/rcmb.2010-0016RC
[32] W. M. Foster, K. B. Adler, A. L. Crews, E. N. Potts, B. M. Fischer and J. A. Voynow, “MARCKS-Related Peptide Modulates in Vivo the Secretion of Airway Muc5ac,” American Journal of Physiology—Lung Cellular and Molecular Physiology, Vol. 299, No. 3, 2010, pp. L345-L352. doi:10.1152/ajplung.00067.2010
[33] J. D. Miller, S. M. Lankford, K. B. Adler and A. R. Brody, “Mesenchymal Stem Cells Require MARCKS Protein for Directed Chemotaxis in Vitro,” American Journal of Respiratory Cell and Molecular Biology, Vol. 43, No. 3, 2010, pp. 253-258. doi:10.1165/rcmb.2010-0015RC
[34] R. E. Eckert, L. E. Neuder, J. Park, K. B. Adler and S. L. Jones, “Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) Protein Regulation of Human Neutrophil Migration,” American Journal of Respiratory Cell and Molecular Biology, Vol. 42, No. 5, 2010, pp. 586-594. doi:10.1165/rcmb.2008-0394OC

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.