Lenalidomide and Arsenic Trioxide Have Independent Non-Interfering Effects When Used in Combination on Myeloma Cell Lines in Vitro

Abstract

Multiple myeloma (MM) is a plasma cell neoplasm characterized for its fast evolution and for being practically incurable, presenting a strong need for the development of therapies to target it. Among those under study are lenalidomide and arsenic trioxide (ATO) which show individual clinical promise, although never tested together. However, the combination of ATO with thalidomide, another immunomodulatory drug and lenalidomide’s structural albeit less potent analog, have been tried clinically with some success. Therefore, we investigated the effect the combination of lenalidomide and ATO have on the MM-derived U266 and RPMI 8226 cell lines. We observed that both compounds have separate, non-interfering, anti-myeloma mechanisms with ATO demonstrating strong cytotoxic effects while lenalidomide’s role remains cytostatic and immunomodulatory. However, ATO decreases cdc25c, which helps sensitize cells to lenalidomide effects enhancing the efficacy of their interaction. Mechanistically the combination of these two agents decreased the expression of MDM2, without affecting p53 activation or its expression. Therefore, this short study provides the foundation to continue mechanistic studies of the combination of lenalidomide and ATO as a foundation for future clinical application.

Share and Cite:

H. Wang, X. Chen, E. Eksioglu, J. Zhou, N. Fortenbery, J. Djeu, A. List and S. Wei, "Lenalidomide and Arsenic Trioxide Have Independent Non-Interfering Effects When Used in Combination on Myeloma Cell Lines in Vitro," Journal of Cancer Therapy, Vol. 4 No. 3, 2013, pp. 787-796. doi: 10.4236/jct.2013.43095.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. A. Kyle and S. V. Rajkumar, “Multiple Myeloma,” New England Journal of Medicine, Vol. 351, No. 18, 2004, pp. 1860-1873. doi:10.1056/NEJMra041875
[2] B. Sirohi and R. Powles, “Multiple Myeloma,” Lancet, Vol. 363, No. 9412, 2004, pp. 875-887. doi:10.1016/S0140-6736(04)15736-X
[3] J. A. Katzel, P. Hari and D. H. Vesole, “Multiple Myeloma: Charging toward a Bright Future,” CA: A Cancer Journal for Clinicians, Vol. 57, No. 5, 2007, pp. 301-318. doi:10.3322/CA.57.5.301
[4] M. Cives, V. Simone, O. Brunetti, et al., “Novel Lenalidomide-Based Combinations for Treatment of Multiple Myeloma,” Critical Reviews in Oncology and Hematology, Vol. 85, No. 1, 2013, pp. 9-20.
[5] S. Kumar and S. V. Rajkumar, “Thalidomide and Lenalidomide in the Treatment of Multiple Myeloma,” European Journal of Cancer, Vol. 42, No. 11, 2006, pp. 1612-1622. doi:10.1016/j.ejca.2006.04.004
[6] M. A. Dimopoulos and E. Kastritis, “The Role of Novel Drugs in Multiple Myeloma,” Annals of Oncology, Vol. 19, No. 7, 2008, pp. vii121-vii127. doi:10.1093/annonc/mdn444
[7] H. Brenner, A. Gondos and D. Pulte, “Recent Major Improvement in Long-Term Survival of Younger Patients with Multiple Myeloma,” Blood, Vol. 111, No. 5, 2008, pp. 2521-2526. doi:10.1182/blood-2007-08-104984
[8] J. B. Bartlett, K. Dredge and A. G. Dalgleish, “The Evolution of Thalidomide and Its IMiD Derivatives as Anticancer Agents,” Nature Reviews Cancer, Vol. 4, No. 4, 2004, pp. 314-322. doi:10.1038/nrc1323
[9] T. Moehler and H. Goldschmidt, “Therapy of Relapsed and Refractory Multiple Myeloma,” Recent Results in Cancer Research, Vol. 183, 2011, pp. 239-271. http://www.ncbi.nlm. nih.gov/pubmed/21509688 doi:10.1007/978- 3-540-85772-3_11
[10] A. Messori, D. Maratea, C. Nozzoli, et al., “The Role of Bortezomib, Thalidomide and Lenalidomide in the Management of Multiple Myeloma: An Overview of Clinical and Economic Information,” Pharmacoeconomics, Vol. 29, No. 4, 2011, pp. 269-285.
[11] S. Wei, X. Chen, K. Rocha, et al., “A Critical Role for Phosphatase Haplodeficiency in the Selective Suppression of Deletion 5q MDS by Lenalidomide,” Proceedings of National Academy of Sciences of USA, Vol. 106, No. 31, 2009, pp. 12974-12979. doi:10.1073/pnas.0811267106
[12] L. G. Corral, P. A. Haslett, G. W. Muller, et al., “Differential Cytokine Modulation and T Cell Activation by Two Distinct Classes of Thalidomide Analogues that Are Potent Inhibitors of TNF-Alpha,” Journal of Immunology, Vol. 163, No. 1, 1999, pp. 380-386.
[13] H. Sartor, F. Ehlert, K. H. Grzeschik, et al., “Assignment of Two Human Cell Cycle Genes, CDC25C and CCNB1, to 5q31 and 5q12, Respectively,” Genomics, Vol. 13, No. 3, 1992, pp. 911-912. doi:10.1016/0888-7543(92)90190-4
[14] H. Kiyokawa and D. Ray, “In Vivo Roles of CDC25 Phosphatases: Biological Insight into the Anti-Cancer Therapeutic Targets,” Anti-Cancer Agents in Medicinal Chemistry, Vol. 8, No. 8, 2008, pp. 832-836. doi:10.2174/187152008786847693
[15] R. Boutros, V. Lobjois and B. Ducommun, “CDC25 Phosphatases in Cancer Cells: Key Players? Good Targets?” Nature Reviews Cancer, Vol. 7, No. 7, 2007, pp. 495-507. doi:10.1038/nrc2169
[16] P. G. Richardson, E. Blood, C. S. Mitsiades, et al., “A Randomized Phase 2 Study of Lenalidomide Therapy for Patients with Relapsed or Relapsed and Refractory Multiple Myeloma,” Blood, Vol. 108, No. 10, 2006, pp. 3458-3464. doi:10.1182/blood-2006-04-015909
[17] M. Dimopoulos, A. Spencer, M. Attal, et al., “Lenalidomide plus Dexamethasone for Relapsed or Refractory Multiple Myeloma,” The New England Journal of Medicine, Vol. 357, No. 21, 2007, pp. 2123-2132. doi:10.1056/NEJMoa070594
[18] D. M. Weber, C. Chen, R. Niesvizky, et al., “Lenalidomide plus Dexamethasone for Relapsed Multiple Myeloma in North America,” The New England Journal of Medicine, Vol. 357, No. 21, 2007, pp. 2133-2142. doi:10.1056/NEJMoa070596
[19] N. C. Munshi, G. Tricot, R. Desikan, et al., “Clinical Activity of Arsenic Trioxide for the Treatment of Multiple Myeloma,” Leukemia, Vol. 16, No. 9, 2002, pp. 1835-1837. doi:10.1038/sj.leu.2402599
[20] W. H. Miller Jr., H. M. Schipper, J. S. Lee, et al., “Mechanisms of Action of Arsenic Trioxide,” Cancer Research, Vol. 62, No. 14, 2002, pp. 3893-3903.
[21] J. R. Berenson, J. Matous, R. A. Swift, et al., “A Phase I/II Study of Arsenic Trioxide/Bortezomib/Ascorbic Acid Combination Therapy for the Treatment of Relapsed or Refractory Multiple Myeloma,” Clinical Cancer Research, Vol. 13, No. 6, 2007, pp. 1762-1768. doi:10.1158/1078-0432.CCR-06-1812
[22] A. Emadi and S. D. Gore, “Arsenic Trioxide—An Old Drug Rediscovered,” Blood Reviews, Vol. 24, No. 4, 2010, pp. 191-199. doi:10.1016/j.blre.2010.04.001
[23] W. Wei, F. Zhou, Y. Zhang, et al., “A Combination of Thalidomide and Arsenic Trioxide Is Effective and Well Tolerated in Patients with Myelodysplastic Syndromes,” Leukemia Research, Vol. 36, No. 6, 2012, pp. 715-719. doi:10.1016/j.leukres.2011.12.023
[24] X. H. Zhu, Y. L. Shen, Y. K. Jing, et al., “Apoptosis and Growth Inhibition in Malignant Lymphocytes after Treatment with Arsenic Trioxide at Clinically Achievable Concentrations,” Journal of the National Cancer Institute, Vol. 91, No. 9, 1999, pp. 772-778. doi:10.1093/jnci/91.9.772
[25] Y. Jing, J. Dai, R. M. Chalmers-Redman, et al., “Arsenic Trioxide Selectively Induces Acute Promyelocytic Leukemia Cell Apoptosis via a Hydrogen Peroxide-Dependent Pathway,” Blood, Vol. 94, No. 6, 1999, pp. 2102-2111.
[26] W. H. Park, J. G. Seol, E. S. Kim, et al., “Arsenic Trioxide-Mediated Growth Inhibition in MC/CAR Myeloma Cells via Cell Cycle Arrest in Association with Induction of Cyclin-Dependent Kinase Inhibitor, p21, and Apoptosis,” Cancer Research, Vol. 60, No. 11, 2000, pp. 3065-3071.
[27] N. J. Bahlis, J. McCafferty-Grad, I. Jordan-McMurry, et al., “Feasibility and Correlates of Arsenic Trioxide Combined with Ascorbic Acid-Mediated Depletion of Intracellular Glutathione for the Treatment of Relapsed/Refractory Multiple Myeloma,” Clinical Cancer Research, Vol. 8, No. 12, 2002, pp. 3658-3668.
[28] M. A. Hussein, M. Saleh, F. Ravandi, et al., “Phase 2 Study of Arsenic Trioxide in Patients with Relapsed or Refractory Multiple Myeloma,” British Journal of Haematology, Vol. 125, No. 4, 2004, pp. 470-476. doi:10.1111/j.1365-2141.2004.04941.x
[29] K. L. Wu, M. Beksac, J. van Droogenbroeck, et al., “Phase II Multicenter Study of Arsenic Trioxide, Ascorbic Acid and Dexamethasone in Patients with Relapsed or Refractory Multiple Myeloma,” Haematologica, Vol. 91, No. 12, 2006, pp. 1722-1723.
[30] C. Rollig and T. Illmer, “The Efficacy of Arsenic Trioxide for the Treatment of Relapsed and Refractory Multiple Myeloma: A Systematic Review,” Cancer Treatment Reviews, Vol. 35, No. 5, 2009, pp. 425-430. doi:10.1016/j.ctrv.2009.04.007
[31] A. Raza, S. Buonamici, L. Lisak, et al., “Arsenic Trioxide and Thalidomide Combination Produces Multi-Lineage Hematological Responses in Myelodysplastic Syndromes Patients, Particularly in Those with High Pre-Therapy EVI1 Expression,” Leukemia Research, Vol. 28, No. 8, 2004, pp. 791-803. doi:10.1016/j.leukres.2003.11.018
[32] S. Y. Ho, W. J. Wu, H. W. Chiu, et al., “Arsenic Trioxide and Radiation Enhance Apoptotic Effects in HL-60 Cells through Increased ROS Generation and Regulation of JNK and p38 MAPK Signaling Pathways,” ChemicoBiological Interactions, Vol. 193, No. 2, 2011, pp. 162-171. doi:10.1016/j.cbi.2011.06.007
[33] H. K. Lam, K. Li, K. W. Chik, et al., “Arsenic Trioxide Mediates Intrinsic and Extrinsic Pathways of Apoptosis and Cell Cycle Arrest in Acute Megakaryocytic Leukemia,” International Journal of Oncology, Vol. 27, No. 2, 2005, pp. 537-545.
[34] E. M. Ocio, M. V. Mateos, P. Maiso, et al., “New Drugs in Multiple Myeloma: Mechanisms of Action and Phase I/II Clinical Findings,” The Lancet Oncology, Vol. 9, No. 12, 2008, pp. 1157-1165. doi:10.1016/S1470-2045(08)70304-8
[35] K. Dredge, R. Horsfall, S. P. Robinson, et al., “Orally Administered Lenalidomide (CC-5013) Is Anti-Angiogenic in Vivo and Inhibits Endothelial Cell Migration and Akt Phosphorylation in Vitro,” Microvascular Research, Vol. 69, No. 1-2, 2005, pp. 56-63. doi:10.1016/j.mvr.2005.01.002
[36] K. Dredge, J. B. Marriott, C. D. Macdonald, et al., “Novel Thalidomide Analogues Display Anti-Angiogenic Activity Independently of Immunomodulatory Effects,” British Journal of Cancer, Vol. 87, No. 10, 2002, pp. 1166-1172. doi:10.1038/sj.bjc.6600607
[37] A. K. Gandhi, J. Kang, S. Naziruddin, et al., “Lenalidomide Inhibits Proliferation of Namalwa CSN.70 Cells and Interferes with Gab1 Phosphorylation and Adaptor Protein Complex Assembly,” Leukemia Research, Vol. 30, No. 7, 2006, pp. 849-858. doi:10.1016/j.leukres.2006.01.010
[38] D. Verhelle, L. G. Corral, K. Wong, et al., “Lenalidomide and CC-4047 Inhibit the Proliferation of Malignant B Cells While Expanding Normal CD34+ Progenitor Cells,” Cancer Research, Vol. 67, No. 2, 2007, pp. 746-755. doi:10.1158/0008-5472.CAN-06-2317
[39] Y. Yang, A. L. Shaffer 3rd, N. C. Emre, et al., “Exploiting Synthetic Lethality for the Therapy of ABC Diffuse Large B Cell Lymphoma,” Cancer Cell, Vol. 21, No. 6, 2012, pp. 723-737. doi:10.1016/j.ccr.2012.05.024
[40] J. B. Marriott, K. Dredge and A. G. Dalgleish, “Thalidomide Derived Immunomodulatory Drugs (IMiDs) as Potential Therapeutic Agents,” Current Drug Targets—Immune, Endocrine & Metabolic Disorders, Vol. 3, No. 3, 2003, pp. 181-186. doi:10.2174/1568008033340207
[41] K. C. Anderson, “Lenalidomide and Thalidomide: Mechanisms of Action—Similarities and Differences,” Seminars in Hematology, Vol. 42, No. 4, 2005, pp. S3-S8. doi:10.1053/j.seminhematol.2005.10.001
[42] D. Michael and M. Oren, “The p53 and Mdm2 Families in Cancer,” Current Opinion in Genetics & Development, Vol. 12, No. 1, 2002, pp. 53-59. doi:10.1016/S0959-437X(01)00264-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.