Share This Article:

Magnetic Properties of a Mixed-Spin-3/2 and Spin-2 Ising Ferrimagnetic System in an Applied Longitudinal Magnetic Field

Abstract Full-Text HTML XML Download Download as PDF (Size:1145KB) PP. 111-118
DOI: 10.4236/wjcmp.2013.32018    3,329 Downloads   5,561 Views   Citations
Author(s)    Leave a comment

ABSTRACT

The magnetic properties of a mixed Ising ferrimagnetic system consisting of spin-3/2 and spin-2 with different single ion anisotropies and under the effect of an applied longitudinal magnetic field are investigated within the mean-field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram is constructed. The thermal behaviours of magnetizations and magnetic susceptibilities are examined in detail. Finally, we find some interesting phenomena in these quantities, due to applied longitudinal magnetic field.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

F. Abubrig, "Magnetic Properties of a Mixed-Spin-3/2 and Spin-2 Ising Ferrimagnetic System in an Applied Longitudinal Magnetic Field," World Journal of Condensed Matter Physics, Vol. 3 No. 2, 2013, pp. 111-118. doi: 10.4236/wjcmp.2013.32018.

References

[1] O. Khan, “Molecular Magnetism,” VCH Publishers, New York, 1993.
[2] T. Kaneyoshi and Y. Nakamura, “A Theoretical Investigation for Low-Dimensional Molecular-based Magnetic Materials,” Journal of Physics: Condensed Matter, Vol. 10, No. 13, 1998, p. 3003. doi:10.1088/0953-8984/10/13/017
[3] T. Kaneyoshi, Y. Nakamura and S. Shin, “A Diluted Mixed Spin-2 and Spin-5/2 Ferrimagnetic Ising System; a Study of a Molecular-Based Magnet,” Journal of Physics, Condensed Matter, Vol. 10, No. 31, 1998, p. 7025. doi:10.1088/0953-8984/10/31/018
[4] M. Mansuripur, “Magnetization Reversal, Coercivity, and the Process of Thermomagnetic Recording in Thin Films of Amorphous Rare Earth Transition Metal Alloys,” Journal of Applied Physics, Vol. 61, No. 4, 1987, pp. 1580-1587. doi:10.1063/1.338094
[5] F. Tanaka, S. Tanaka and N. Imamura, “Magneto-Optical Recording Characteristics of TbFeCo Media by Magnetic Field Modulation Method,” Japan Journal of Applied Physics, Vol. 26, 1987, pp. 231-235. doi:10.1143/JJAP.26.231
[6] L. L. Goncaloves, ‘‘Uniaxial Anisotropy Effects in the Ising Model: An Exactly Soluble Model,” Physica Scripta, Vol. 32, No. 3, 1985, p. 248. doi:10.1088/0031-8949/32/3/012
[7] L. L. Goncaloves, “Uniaxial Anisotropy Effects in the Ising Model: An Exactly Soluble Model,” Physica Scripta, Vol. 33, No. 2, 1986, p. 192. doi:10.1088/0031-8949/33/2/018
[8] A. Dakhama and N. Benayad, “On the Existence of Compensation Temperature in 2d Mixed-Spin Ising Ferrimagnets: An Exactly Solvable Model,” Journal of Magnetism and Magnetic Materials, Vol. 213, No. 1-2, 2000, pp. 117-125. doi:10.1016/S0304-8853(99)00606-X
[9] N. R. da Silva and S. R. Salinas, “Mixed-Spin Ising Model on Beth Lattice,” Physical Review, Vol. 44, No. 2, 1991, pp. 852-855. doi:10.1103/PhysRevB.44.852
[10] J. W. Tucker, “The Ferrimagnetic Mixed Spin-1/2 and Spin-1 Sing System,” Journal of Magnetism and Magnetic Materials, Vol. 195, No. 3, 1999, pp. 733-740. doi:10.1016/S0304-8853(99)00302-9
[11] T. Kaneyoshi and J. C. Chen, “Mean-Field Analysis of a Ferrimagnetic Mixed Spin System,” Journal of Magnetism and Magnetic Materials, Vol. 98, No. 1-2, 1991, pp. 201-204. doi:10.1016/0304-8853(91)90444-F
[12] T. Kaneyoshi, “Curie Temperatures and Tricritical Points in Mixed Ising Ferromagnetic Systems,” The Physical Society of Japan, Vol. 56, 1987, pp. 2675-2680. doi:10.1143/JPSJ.56.2675
[13] T. Kaneyoshi, “Phase Transition of the Mixed Spin System with a Random Crystal Field,” Physica A, Vol. 153, No. 3, 1988, pp. 556-566. doi:10.1016/0378-4371(88)90240-3
[14] T. Kaneyoshi, M. Jascur and P. Tomczak, “The Ferrimagnetic Mixed Spin-1/2 and Spin-3/2 Ising System,” Journal of Physics: Condensed Matter, Vol. 4, No. 49, 1992, pp. L653-L658. doi:10.1088/0953-8984/4/49/002
[15] T. Kaneyoshi, “Tricritical Behavior of a Mixed Spin-1/2 and Spin-2 Ising System,” Physica A, Vol. 205, No. 4, 1994, pp. 677-686. doi:10.1016/0378-4371(94)90229-1
[16] A. Bobak and M. Jurcisin, “Discussion of Critical Behaviour in a Mixed-Spin Ising Model,” Physica A, Vol. 240, No. 3-4, 1997, pp. 647-656. doi:10.1016/S0378-4371(97)00044-7
[17] S. G. A. Quadros and S. R. Salinas, “RenormalizationGroup Calculations for a Mixed-Spin Ising Model,” Physica A: Statistical Mechanics and Its Applications, Vol. 206, No. 3-4, 1994, pp. 479-496.
[18] G.-M. Zhang and C.-Z. Yang, “Monte Carlo Study of the Two-Dimensional Quadratic Ising Ferromagnet with Spins S=1/2 and S=1 and with Crystal-Field Interactions,” Physical Review B, Vol. 48, No. 13, 1993, pp. 9452-9455. doi:10.1103/PhysRevB.48.9452
[19] G. M. Buendia and M. A. Novotny, “Numerical Study of a Mixed Ising Ferrimagnetic System,” Journal of Physics: Condensed Matter, Vol. 9, No. 27, 1997, pp. 5951-5964. doi:10.1088/0953-8984/9/27/021
[20] G. M. Buendia and J. A. Liendo, “Monte Carlo Simulation of a Mixed Spin-1/2 and Spin-3/2 Ising Ferrimagnetic System,” Journal of Physics: Condensed Matter, Vol. 9, No. 25, 1997, pp. 5439-5448. doi:10.1088/0953-8984/9/25/011
[21] M. Doerr, S. Kramp, M. Loewenhaupt, M. Rotter, R. Kratz, H. Krug, D. Eckert, H. Siegel and P. Verges, “Anomalous Magnetic Behaviour of NdCu2 in High Magnetic Fields,” Physica B: Condensed Matter, Vol. 294-295, 2001, pp. 164-167. doi:10.1016/S0921-4526(00)00633-5
[22] K. Koyama, H. Fujii, T. Goto, H. Fukuda and Y. Janssen, “Magnetic Phase Transitions of Ce2Fe17 under High Pressures and High Magnetic Fields,” Physica B: Condensed Matter, Vol. 294-295, 2001, pp. 168-171. doi:10.1016/S0921-4526(00)00634-7
[23] F. Albertini, F. Bolzoni, A. Paoluzi, L. Pareti and E. Zannoni, “Magnetic-Field Induced First-Order Transitions in the Intermetallic Compound Pr2Fe17,” Condensed Matter, Vol. 294-295, 2001, pp. 172-176. doi:10.1016/S0921-4526(00)00635-9
[24] C. Ekiz and M. Keskin, “Magnetic Properties Of The Mixed Spin-1/2 and Spin-1 Ising Ferromagnetic System,” Physica A, Vol. 317, No. 3-4, 2003, pp. 517-534. doi:10.1016/S0378-4371(02)01356-0
[25] G.-Z. Wei, Y.-Q. Liang, Q. Zhang and Z.-H. Xin, “Magnetic Properties of Mixed-Spin Ising Systems in a Longitudinal Magnetic Field,” Journal of Magnetism and Magnetic Materials, Vol. 271, No. 2-3, 2004, pp. 246-253. doi:10.1016/j.jmmm.2003.09.043
[26] C. Ekiz, “Mixed Spin-1/2 and Spin-3/2 Ising System in a Longitudinal Magnetic Field,” Journal of Magnetism and Magnetic Materials, Vol. 293, No. 3, 2005, pp. 913-923. doi:10.1016/j.jmmm.2004.12.012
[27] M. Aouzi, M. El Hafidi and E. M. Sakhaf, “Thermodynamic and Magnetic Properties of a Mixed Ising System on a Triangular Array in Presence of Longitudinal Field,” Physica A, Vol. 345, No. 3-4, 2005, pp. 575-590.
[28] W. Jiang and B.-D. Bai, “Hysteresis Loops and Susceptibility of Ferromagnetic or Ferrimagnetic Bilayer System,” Physica Status Solidi (b), Vol. 243, No. 12, 2006, pp. 2892-2900. doi:10.1002/pssb.200541244
[29] B. Deviren, M. Keskinb and O. Cankob, “Magnetic Properties of an Anti-Ferromagnetic and Ferrimagnetic Mixed Spin-1/2 and Spin-5/2 Ising Model in the Longitudinal Magnetic Field within the Effective-Field Approximation,” Physica A, Vol. 388, No. 9, 2009, pp. 1835-1848. doi:10.1016/j.physa.2009.01.032
[30] B. Deviren, E. Kantar and M. Keskin, “Magnetic Properties of a Mixed Spin-3/2 and Spin-2 Ising Ferrimagnetic System within the Effective-Field Theory,” Journal of the Korean Physical Society, Vol. 56, No. 6, 2010, pp. 1738-1747. doi:10.3938/jkps.56.1738
[31] O. F. Abubrig, D. Horvath, A. Bobak and M. Jascur, “Mean-Field Solution of the Mixed Spin-1 and Spin-3/2 Ising System with Different Single-Ion Anisotropies,” Physica A, Vol. 296, No. 3-4, 2001, pp. 437-450.
[32] A. Bobak, O. F. Abubrig and D. Horvath, “An Effective-Field Study of the Mixed Spin-1 and Spin-3/2 Ising Ferrimagnetic System,” Journal of Magnetism and Magnetic Materials, Vol. 246, No. 1-2, 2002, pp. 177-183. doi:10.1016/S0304-8853(02)00048-3
[33] C. Ekiz, “The Possibility of Two Compensation Points in a Ferrimagnetic Mixed Spin-1 and Spin-3/2 Ising System Using Bethe Lattice Approach,” Journal of Magnetism and Magnetic Materials, Vol. 307, No. 1, 2006, pp. 139-147. doi:10.1016/j.jmmm.2006.03.059
[34] Y. Nakamura and J. W. Tucker, “Monte Carlo Study of a Mixed Spin-1 and Spin-3/2 Ising Ferromagnet,” IEEE Transactions on Magnetics, Vol. 38, No. 5, 2002, pp. 2406-2408. doi:10.1109/TMAG.2002.803598
[35] A. Bobak, O. F. Abubrig and D. Horvath, “Magnetic Properties of a Mixed Ferro-Ferrimagnetic Ternary Alloy,” Physica A, Vol. 312, No. 1-2, 2002, pp. 187-207. doi:10.1016/S0378-4371(02)00864-6
[36] T. Kaneyoshi, I. Tamura and R. Honmura, “Dilute Ising Ferromagnet: Its Physical Proprties,” Physical Review B, Vol. 29, No. 5, 1984, pp. 2769-2776. doi:10.1103/PhysRevB.29.2769
[37] A. Bobak and M. Jascur, “Correlated Effective-Field Theory of the Site-Diluted Ising Model,” Journal of Magnetism and Magnetic Materials, Vol. 136, No. 1-2. 1994, pp. 105-117. doi:10.1016/0304-8853(94)90454-5
[38] A. A. da Silva and F. G. Brady Moreira, “Thermodynamic Properties and Phase Transitions of the Site-BondCorrelated Ising Model,” Physical Review B, Vol. 40, No. 16, 1989, pp. 10986-10991. doi:10.1103/PhysRevB.40.10986

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.