Share This Article:

On З-Reconstruction Property

Abstract Full-Text HTML XML Download Download as PDF (Size:204KB) PP. 324-330
DOI: 10.4236/apm.2013.33046    2,513 Downloads   4,719 Views   Citations

ABSTRACT

Reconstruction property in Banach spaces introduced and studied by Casazza and Christensen in [1]. In this paper we introduce reconstruction property in Banach spaces which satisfy -property. A characterization of reconstruction property in Banach spaces which satisfy -property in terms of frames in Banach spaces is obtained. Banach frames associated with reconstruction property are discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

L. Vashisht and G. Khattar, "On З-Reconstruction Property," Advances in Pure Mathematics, Vol. 3 No. 3, 2013, pp. 324-330. doi: 10.4236/apm.2013.33046.

References

[1] P. G. Casazza and O. Christensen, “The Reconstruction Property in Banach Spaces and a Perturbation Theorem,” Canadian Mathematical Bulletin, Vol. 51, No. 3, 2008, pp. 348-358. doi:10.4153/CMB-2008-035-3
[2] R. J. Duffin and A. C. Schaeffer, “A Class of Non-Harmonic Fourier Series,” Transactions of the American Mathematical Society, Vol. 72, No. 2, 1952, pp. 341-366. doi:10.1090/S0002-9947-1952-0047179-6
[3] D. Gabor, “Theory of Communications. Part 1: The Analysis of Information,” Journal of the Institution of Electrical Engineers, Vol. 93, No. 26, 1946, pp. 429-457.
[4] I. Daubechies, A. Grossmann and Y. Meyer, “Painless Non-Orthogonal Expansions,” Journal of Mathematical Physics, Vol. 27, No. 5, 1986, pp. 1271-1283. doi:10.1063/1.527388
[5] K. Grochenig, “Describing Functions: Atomic Decompositions versus Frames,” Monatshefte für Mathematik, Vol. 112, No. 1, 1991, pp. 1-42. doi:10.1007/BF01321715
[6] H. G. Feichtinger and K. Grochenig, “Banach Spaces Related to Integrable Group Representations and Their Atomic Decompositions, I,” Journal of Functional Analysis, Vol. 86, No. 2, 1989, pp. 305-340. doi:10.1016/0022-1236(89)90055-4
[7] H. G. Feichtinger and K. Grochenig, “Banach Spaces Related to Integrable Group Representations and Their Atomic Decompositions, II,” Monatshefte für Mathematik, Vol. 108, No. 2-3, 1989, pp. 129-148. doi:10.1007/BF01308667
[8] O. Christensen and C. Heil, “Perturbation of Banach Frames and Atomic Decomposition,” Mathematische Nachrichten, Vol. 185, No. 1, 1997, pp. 33-47. doi:10.1002/mana.3211850104
[9] R. R. Coifman and G. Weiss, “Extensions of Hardy Spaces and Their Use in Analysis,” Bulletin of the American Mathematical Society, Vol. 83, No. 4, 1977, pp. 569-645. doi:10.1090/S0002-9904-1977-14325-5
[10] R. Young, “A Introduction to Non-Harmonic Fourier Series,” Academic Press, New York, 1980.
[11] I. Daubechies, “Ten Lectures on Wavelets,” Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1992. doi:10.1137/1.9781611970104
[12] C. Heil and D. Walnut, “Continuous and Discrete Wavelet Transforms,” SIAM Review, Vol. 31, No. 4, 1989, pp. 628-666. doi:10.1137/1031129
[13] O. Christensen, “Frames and Bases (An Introductory Course),” Birkhauser, Boston, 2008.
[14] P. K. Jain, S. K. Kaushik and L. K. Vashisht, “Banach Frames for Conjugate Banach Spaces,” Zeitschrift für Analysis und ihre Anwendungen, Vol. 23, No. 4, 2004, pp. 713-720. doi:10.4171/ZAA/1217
[15] P. G. Casazza, D. Han and D. R. Larson, “Frames for Banach Spaces,” Contemporary Mathematics, Vol. 247, 1999, pp. 149-182. doi:10.1090/conm/247/03801
[16] L. K. Vashisht, “On Φ-Schauder Frames,” TWMS Journal of Applied and Engineering Mathematics (JAEM), Vol. 2, No. 1, 2012, pp. 116-120.
[17] M. A. Neumark, “Linear Differential Operator (Translation from the Russian),” Akademie-Verlag, Berlin, 1960.
[18] F. Riesz and B.Sz.-Nagy, “Functional Analysis,” F. Ungar Co., New York, 1955.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.